In recent years,water evaporation-induced electricity has attracted a great deal of attention as an emerging green and renewable energy harvesting technology.Although abundant materials have been developed to fabricat...In recent years,water evaporation-induced electricity has attracted a great deal of attention as an emerging green and renewable energy harvesting technology.Although abundant materials have been developed to fabricate hydrovoltaic devices,the limitations of high costs,inconvenient storage and transport,low environmental benefits,and unadaptable shape have restricted their wide applications.Here,an electricity generator driven by water evaporation has been engineered based on natural biomass leather with inherent properties of good moisture permeability,excellent wettability,physicochemical stability,flexibility,and biocompatibility.Including numerous nano/microchannels together with rich oxygen-bearing functional groups,the natural leather-based water evaporator,Leather_(Emblic-NPs-SA/CB),could continuously produce electricity even staying outside,achieving a maximum output voltage of∼3 V with six-series connection.Furthermore,the leather-based water evaporator has enormous potential for use as a flexible self-powered electronic floor and seawater demineralizer due to its sensitive pressure sensing ability as well as its excellent photothermal conversion efficiency(96.3%)and thus fast water evaporation rate(2.65 kg m^(−2)h^(−1)).This work offers a new and functional material for the construction of hydrovoltaic devices to harvest the sustained green energy from water evaporation in arbitrary ambient environments,which shows great promise in their widespread applications.展开更多
As primary and secondary forests are being replaced by plantations across the globe,the soil macrofauna community structure is also affected,but little is known about the impact of mixed culture plantations compared w...As primary and secondary forests are being replaced by plantations across the globe,the soil macrofauna community structure is also affected,but little is known about the impact of mixed culture plantations compared with monocultures on the soil macrofauna.To determine the impact of forest conversion on soil macrofauna,we surveyed the soil macrofauna in two broad-leaved and three coniferous monoculture stands and four coniferous-broadleaved mixed stands,and in adjacent reserved secondary stands as a reference.Soil macro fauna community composition was significant affected by forest type,season and their interaction(P<0.05).The abundance,taxa richness and diversity of soil macro fauna changed to different degrees depending on the plantation type.Broadleaved monoculture stands and secondary stands had similar macrofauna abundance and taxa richness,but values were lower in coniferous stands than in secondary stands.The Shannon index for macrofauna in coniferous stands was also the lowest,but the Pielou index did not differ between forest types.The negative effects of the conifer monoculture on soil macro fauna were not present in the mixed stands with broad-leaved trees.Forest conversion impacted soil properties;soil moisture,NO_(3)^(-),and pH were significant drivers of soil macrofauna community structure.The impact of forest conversion on soil macrofauna was closely dependent on tree species composition and diversity.The macro fauna community structure in the broadleaved and the mixed stands were relatively similar to that in the natural forest,and thus recommended for forest conversion in the study area.展开更多
The sulfur cathodes operating via solid phase conversion of sulfur have natural advantages in suppressing polysulfide dissolution and lowering the electrolyte dosage,and thus realizing significant improvements in both...The sulfur cathodes operating via solid phase conversion of sulfur have natural advantages in suppressing polysulfide dissolution and lowering the electrolyte dosage,and thus realizing significant improvements in both cycle life and energy density.To realize an ideal solid-phase conversion of sulfur,a deep understanding of the regulation path of reaction mechanism and a corresponding intentional material and/or cathode design are highly essential.Herein,via covalently fixing of sulfur onto the triallyl isocyanurate,a series of S-triallyl isocyanurate organosulfur polymer composites(STIs) are developed.Relationship between the structure and the electrochemical conversion behavior of STIs is systematically investigated.It is found that the structure of STIs varies with the synthetic temperature,and correspondingly the electrochemical redox of sulfur can be controlled from conventional "solid-liquid-solid" conversion to the "solid-solid" one.Among the STI series,the STI-5 composite realizes an ideal solid-phase conversion and demonstrates great potential for building a Li-S battery with high-energy density and long-cyclelife:it realizes stable cycling over 1000 cycles in carbonate electrolyte,with a degradation rate of0.053% per cycle;the corresponding pouch cell shows almost no capacity decay for 125 cycles under the conditions of high sulfur loading(4.5 mg cm^(-2)) and lean electrolyte(8 μL mg_s^(-1)).In addition,the tailoring strategy of STI can also apply to other precursors with allyl functional groups to develop new organosulfur polymers for "solid-solid" sulfur cathodes.The vulcanized triallyl phosphate(STP) and triallylamine(STA) both show great lithium storage potential.This strategy successfully develops a new family of organosulfur polymers as cathodes for Li-S batteries via solid-phase conversion of sulfur,and brings insights to the mechanism study in Li-S batteries.展开更多
The over-exploitation of fossil fuel energy has brought about serious environmental problems.It would be of great significance to construct efficient energy conversion and storage system to maximize utilize renewable ...The over-exploitation of fossil fuel energy has brought about serious environmental problems.It would be of great significance to construct efficient energy conversion and storage system to maximize utilize renewable energy,which contributes to reducing environmental hazards.For the past few years,in terms of electrocatalysis and energy storage,carbon fiber materials show great advantages due to its outstanding electrical conductivity,good flexibility and mechanical property.As a simple and low-cost technique,electrospinning can be employed to prepare various nanofibers.It is noted that the functional fiber materials with different special structure and composition can be obtained for energy conversion and storage by combining electrospinning with other post-processing.In this paper,the structural design,controllable synthesis and multifunctional applications of electrospinning-derived functional carbon-based materials(EFCMs)is reviewed.Firstly,we briefly introduce the history,basic principle and typical equipment of electrospinning.Then we discuss the strategies for preparing EFCMs with different structures and composition in detail.In addition,we show recently the application of advanced EFCMs in energy conversion and storage,such as nitrogen species reduction reaction,CO_(2) reduction reaction,oxygen reduction reaction,water-splitting,supercapacitors and ion batteries.In the end,we propose some perspectives on the future development direction of EFCMs.展开更多
Layered double hydroxides (LDHs), a class of anionic clays consisting of brucite-like host layers and interlayer anions, have been widely investigated in the last decade due to their promising applications in many are...Layered double hydroxides (LDHs), a class of anionic clays consisting of brucite-like host layers and interlayer anions, have been widely investigated in the last decade due to their promising applications in many areas such as catalysis, ion separation and adsorption. Owing to the highly tunable compositi on and uniform distribution of metal cations in the brucite-like layers, as well as the facile exchangeability of intercalated anions, LDHs can be modified and functionalized to form various nanostructures/composites through versatile processes such as anion intercalation and exfoliation, decoration of nanoparticles, selfassembly with other two-dimensional (2D) materials, and controlled growth on conductive supports (e.g., nanowire arrays, nano tubes, 3D foams). In this article, we briefly review the recent advances on both the LDH nano structures and functionalized composites toward the applications in energy conversion, especially for water oxidation.展开更多
The reaction mechanism of zeolite- or zeotype-catalyzed methanol-to-olefins(MTO) conversion is still a subject of debate. Employing periodic density functional theory calculations, the olefin-based cycle was studied...The reaction mechanism of zeolite- or zeotype-catalyzed methanol-to-olefins(MTO) conversion is still a subject of debate. Employing periodic density functional theory calculations, the olefin-based cycle was studied using tetramethylethene(TME) as a representative olefinic hydrocarbon pool in H-SAPO-18 zeotype. The overall free energy barrier at 673 K was calculated and found to be less than 150 kJ/mol in the TME-based cycle, much lower than those in the aromatic-based cycle(〉 200 kJ/mol), indicating that olefins themselves are the dominant active hydrocarbon pool species in H-SAPO-18. The similarity of the intermediates involved between the aromatic-based cycle and the olefin-based cycle was also highlighted, revealing that both cycles were pattern-consistent. The selectivity related to the distribution of cracking precursors, such as higher olefins or carbenium ions, as a result of the olefin-based cycle for the MTO conversion. The enthalpy barrier of the crack-ing step scaled linearly with the number of carbon atoms of cracking precursors to produce ethene or propene with ethene being much less favored than propene for cracking of C7 and higher pre-cursors. This work highlighted the importance of the olefin-based cycle in H-SAPO-18 for the MTO conversion and established the similarity between the olefin-based and aromatic-based cycles.展开更多
The interpersonal function in Halliday's system-functional grammar can instruct and apply to many-sided language communication.The article is aimed at analyzing language function reflected in the conversations bet...The interpersonal function in Halliday's system-functional grammar can instruct and apply to many-sided language communication.The article is aimed at analyzing language function reflected in the conversations between international students in different cultural background and native speakers,and then getting reflections on classroom teaching language.展开更多
It is of practical significance for the decision-making on country food security and farmland protection to analyze the conversion margins for the major uses of agricultural land and their variations. Based on the pan...It is of practical significance for the decision-making on country food security and farmland protection to analyze the conversion margins for the major uses of agricultural land and their variations. Based on the panel data of wheat, corn, vegetable, fruit, and forests productions from 520 investigated farmer households of 13 investigated villages in Shandong Province from 2003 to 2009, and using Cobb-Douglas production function, the revenue conversion margins can be obtained separately, between different grain-crops (wheat, corn) and different non-grain crops (vegetable, fruit, forests), and the conversion relationship between growing grain( wheat, corn) and going out for non-farm work. The results show that from 2003 to 2009, growing wheat and corn are more economically and reasonably for farmers, compared with growing vegetable, but growing wheat and corn are becoming less economically and less reasonably day by day, compared with planting forests. Moreover, the conversion margin between wheat and fruit shows obvious scissors difference. Just from 2007, farm- ers' growing fruit became economically and reasonably, but until 2009, compared with going out to work after abandoning farm- land, growing wheat had no economic rationality. From 2003 to 2009, farmers' growing corn is more profitable than growing fruit and going out for non-farm work after abandoning farmland. The subsidies for wheat and corn have increased farmers' comparative income from food production remarkably, but the subsidies cannot change the general tendency that farmers transform food (wheat, corn) production into non-food (especially forests) production. The revenue difference between growing wheat, corn and vegetable and growing fruit and forests is being pulled ceaselessly bigger, and the tendency that farmers transform wheat, corn and vegetable growing lands into fruit and forests growing lands has become increasingly apparent.展开更多
Rural-urban land conversion is currently a common social economic phenomenon during the process of economic development and rural urbanization in China. Rural-urban land conversion is positively effective as far as so...Rural-urban land conversion is currently a common social economic phenomenon during the process of economic development and rural urbanization in China. Rural-urban land conversion is positively effective as far as social and economic benefits are concerned (Yang, 2002), but its negative effect is also evident, resulting in such problems as low efficiency of rural land configuration and loss of social welfare. Consequently, farm-ers should also have an equal chance to enjoy the social welfare enhanced by land conversion. Based on the theories of welfare economy, this paper puts forward policy suggestions by discussing the welfare changes of various interest groups, builds the model of welfare distribution, and analyzes the conditions of maximizing social welfare. The absolute and opposite value of social welfare is closely related with the speed of rural-urban land conversion, and governments should give farmers and collectives fair compensa-tion to make up for the utility loss caused by land expropriation, which are conclusions drawn from this paper. This study aims to provide a theoretical basis for regulating targets and evaluation criteria, realizing the mechanism and implementation of public po-lices during rural-urban land conversion.展开更多
The present study analyzes the phenomenon of intentional misinterpretation in verbal communication and its communicative functions. In human verbal communication, misunderstanding occurs when the hearer’s understandi...The present study analyzes the phenomenon of intentional misinterpretation in verbal communication and its communicative functions. In human verbal communication, misunderstanding occurs when the hearer’s understanding of the speaker’s utterances is not identical with the speaker’s intended one. However, in some cases, the hearer may intentionally choose the interpretation diverging from the speaker’s intended meaning in order to achieve certain communicative effects. This kind of linguistic phenomenon can be called intentional misinterpretation, which performs various functions in human daily conversation.展开更多
As an indispensable part of medical practice.doctor-patient conversation is drawing more and more attention in the field of sociology,psychology and linguistics.Little attention,however,has been paid to the interperso...As an indispensable part of medical practice.doctor-patient conversation is drawing more and more attention in the field of sociology,psychology and linguistics.Little attention,however,has been paid to the interpersonal aspect of the conversation between doctors and patients,which is regarded as one of the most complex interpersonal relationships.Being dominant in the interaction,doctors'words,mainly in the form of questions,deserve more studies,especially for the interpersonal functions delivered.This study mainly focuses on this aspect.展开更多
This paper presents a closed-loop vector control structure based on adaptive Fuzzy Logic Sliding Mode Controller (FL-SMC) for a grid-connected Wave Energy Conversion System (WECS) driven Self-Excited Induction Generat...This paper presents a closed-loop vector control structure based on adaptive Fuzzy Logic Sliding Mode Controller (FL-SMC) for a grid-connected Wave Energy Conversion System (WECS) driven Self-Excited Induction Generator (SEIG). The aim of the developed control method is to automatically tune and optimize the scaling factors and the membership functions of the Fuzzy Logic Controllers (FLC) using Multi-Objective Genetic Algorithms (MOGA) and Multi-Objective Particle Swarm Optimization (MOPSO). Two Pulse Width Modulated voltage source PWM converters with a carrier-based Sinusoidal PWM modulation for both Generator- and Grid-side converters have been connected back to back between the generator terminals and utility grid via common DC link. The indirect vector control scheme is implemented to maintain balance between generated power and power supplied to the grid and maintain the terminal voltage of the generator and the DC bus voltage constant for variable rotor speed and load. Simulation study has been carried out using the MATLAB/Simulink environment to verify the robustness of the power electronics converters and the effectiveness of proposed control method under steady state and transient conditions and also machine parameters mismatches. The proposed control scheme has improved the voltage regulation and the transient performance of the wave energy scheme over a wide range of operating conditions.展开更多
The functional analysis of interruption is of great necessity in carrying out a smooth conversation.By exemplifying interruptions in specific conversational situations identified in Friends,the paper has explored the ...The functional analysis of interruption is of great necessity in carrying out a smooth conversation.By exemplifying interruptions in specific conversational situations identified in Friends,the paper has explored the relative,interactive,pluralistic and situational characteristics of functions of interruptions.展开更多
以双馈风力发电系统(doubly-fed induction generator based wind energy conversion system,DFIG-based WECS)为例,利用小信号分析法推导出由风机、双质量块传动链构成的动力与传动系统通用传递函数方程。动力与传动系统传递函数的零...以双馈风力发电系统(doubly-fed induction generator based wind energy conversion system,DFIG-based WECS)为例,利用小信号分析法推导出由风机、双质量块传动链构成的动力与传动系统通用传递函数方程。动力与传动系统传递函数的零极点位置、稳定性与系统参数及系统运行工作点相关。该传递函数可进一步分解为扭转分量和非扭转分量。传动链参数仅对扭转分量造成影响。在此基础上,建立了考虑动力传动、电机、变流器、控制等环节的风力发电系统传递函数模型。模型综合了各环节参数,可直观反映系统参数对系统响应的影响,有助于深入了解系统动态行为。算例及时域仿真结果证明了所提出传递函数模型的准确性和高效性,可为系统参数设计研究提供理论依据。展开更多
基金supported by the National Natural Science Foundation of China(22308210)the Scientific Research Program Funded by Shaanxi Provincial Education Department(23JK0350)+3 种基金the Open Foundation of Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry,Ministry of Education,and Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology,Shaanxi University of Science and Technology(KFKT2021-12)the Opening Project of Key Laboratory of Leather Chemistry and Engineering(Sichuan University),Ministry of Education(2022)the RIKEN-MOST Project between the Ministry of Science and Technology of the People's Republic of China(MOST)and RIKEN,the China Scholarship Council(202108610127)the Natural Science Foundation of Shaanxi University of Science&Technology(2019BT-44).
文摘In recent years,water evaporation-induced electricity has attracted a great deal of attention as an emerging green and renewable energy harvesting technology.Although abundant materials have been developed to fabricate hydrovoltaic devices,the limitations of high costs,inconvenient storage and transport,low environmental benefits,and unadaptable shape have restricted their wide applications.Here,an electricity generator driven by water evaporation has been engineered based on natural biomass leather with inherent properties of good moisture permeability,excellent wettability,physicochemical stability,flexibility,and biocompatibility.Including numerous nano/microchannels together with rich oxygen-bearing functional groups,the natural leather-based water evaporator,Leather_(Emblic-NPs-SA/CB),could continuously produce electricity even staying outside,achieving a maximum output voltage of∼3 V with six-series connection.Furthermore,the leather-based water evaporator has enormous potential for use as a flexible self-powered electronic floor and seawater demineralizer due to its sensitive pressure sensing ability as well as its excellent photothermal conversion efficiency(96.3%)and thus fast water evaporation rate(2.65 kg m^(−2)h^(−1)).This work offers a new and functional material for the construction of hydrovoltaic devices to harvest the sustained green energy from water evaporation in arbitrary ambient environments,which shows great promise in their widespread applications.
基金supported by the Fundamental Research Funds for the Central Universities (572017PZ03,2572020DR04 and 2572019CP16)。
文摘As primary and secondary forests are being replaced by plantations across the globe,the soil macrofauna community structure is also affected,but little is known about the impact of mixed culture plantations compared with monocultures on the soil macrofauna.To determine the impact of forest conversion on soil macrofauna,we surveyed the soil macrofauna in two broad-leaved and three coniferous monoculture stands and four coniferous-broadleaved mixed stands,and in adjacent reserved secondary stands as a reference.Soil macro fauna community composition was significant affected by forest type,season and their interaction(P<0.05).The abundance,taxa richness and diversity of soil macro fauna changed to different degrees depending on the plantation type.Broadleaved monoculture stands and secondary stands had similar macrofauna abundance and taxa richness,but values were lower in coniferous stands than in secondary stands.The Shannon index for macrofauna in coniferous stands was also the lowest,but the Pielou index did not differ between forest types.The negative effects of the conifer monoculture on soil macro fauna were not present in the mixed stands with broad-leaved trees.Forest conversion impacted soil properties;soil moisture,NO_(3)^(-),and pH were significant drivers of soil macrofauna community structure.The impact of forest conversion on soil macrofauna was closely dependent on tree species composition and diversity.The macro fauna community structure in the broadleaved and the mixed stands were relatively similar to that in the natural forest,and thus recommended for forest conversion in the study area.
基金supported by the National Science Foundation of China (22075091)the National Science Foundation of Hubei Province (2021CFA066)。
文摘The sulfur cathodes operating via solid phase conversion of sulfur have natural advantages in suppressing polysulfide dissolution and lowering the electrolyte dosage,and thus realizing significant improvements in both cycle life and energy density.To realize an ideal solid-phase conversion of sulfur,a deep understanding of the regulation path of reaction mechanism and a corresponding intentional material and/or cathode design are highly essential.Herein,via covalently fixing of sulfur onto the triallyl isocyanurate,a series of S-triallyl isocyanurate organosulfur polymer composites(STIs) are developed.Relationship between the structure and the electrochemical conversion behavior of STIs is systematically investigated.It is found that the structure of STIs varies with the synthetic temperature,and correspondingly the electrochemical redox of sulfur can be controlled from conventional "solid-liquid-solid" conversion to the "solid-solid" one.Among the STI series,the STI-5 composite realizes an ideal solid-phase conversion and demonstrates great potential for building a Li-S battery with high-energy density and long-cyclelife:it realizes stable cycling over 1000 cycles in carbonate electrolyte,with a degradation rate of0.053% per cycle;the corresponding pouch cell shows almost no capacity decay for 125 cycles under the conditions of high sulfur loading(4.5 mg cm^(-2)) and lean electrolyte(8 μL mg_s^(-1)).In addition,the tailoring strategy of STI can also apply to other precursors with allyl functional groups to develop new organosulfur polymers for "solid-solid" sulfur cathodes.The vulcanized triallyl phosphate(STP) and triallylamine(STA) both show great lithium storage potential.This strategy successfully develops a new family of organosulfur polymers as cathodes for Li-S batteries via solid-phase conversion of sulfur,and brings insights to the mechanism study in Li-S batteries.
基金supported by the Natural Science Foundation of Shandong Province(No.ZR2022QE076)the National Natural Science Foundation of China(No.52202092)。
文摘The over-exploitation of fossil fuel energy has brought about serious environmental problems.It would be of great significance to construct efficient energy conversion and storage system to maximize utilize renewable energy,which contributes to reducing environmental hazards.For the past few years,in terms of electrocatalysis and energy storage,carbon fiber materials show great advantages due to its outstanding electrical conductivity,good flexibility and mechanical property.As a simple and low-cost technique,electrospinning can be employed to prepare various nanofibers.It is noted that the functional fiber materials with different special structure and composition can be obtained for energy conversion and storage by combining electrospinning with other post-processing.In this paper,the structural design,controllable synthesis and multifunctional applications of electrospinning-derived functional carbon-based materials(EFCMs)is reviewed.Firstly,we briefly introduce the history,basic principle and typical equipment of electrospinning.Then we discuss the strategies for preparing EFCMs with different structures and composition in detail.In addition,we show recently the application of advanced EFCMs in energy conversion and storage,such as nitrogen species reduction reaction,CO_(2) reduction reaction,oxygen reduction reaction,water-splitting,supercapacitors and ion batteries.In the end,we propose some perspectives on the future development direction of EFCMs.
基金supported by the National Natural Science Foundation of China(Grant Nos.21505050,51672109)the Dispatch of Faculty Abroad of the University of Jinan+2 种基金the Natural Science Foundation of Shandong Province(Grant No.ZR2016FM30)supported in part by the WPI-MANA,Ministry of Education,Culture,Sports,Science and Technology,Japansupport from JSPS KAKENNHI(18H03869)
文摘Layered double hydroxides (LDHs), a class of anionic clays consisting of brucite-like host layers and interlayer anions, have been widely investigated in the last decade due to their promising applications in many areas such as catalysis, ion separation and adsorption. Owing to the highly tunable compositi on and uniform distribution of metal cations in the brucite-like layers, as well as the facile exchangeability of intercalated anions, LDHs can be modified and functionalized to form various nanostructures/composites through versatile processes such as anion intercalation and exfoliation, decoration of nanoparticles, selfassembly with other two-dimensional (2D) materials, and controlled growth on conductive supports (e.g., nanowire arrays, nano tubes, 3D foams). In this article, we briefly review the recent advances on both the LDH nano structures and functionalized composites toward the applications in energy conversion, especially for water oxidation.
基金supported by the National Key Research and Development Program of China (2016YFB0701100, 2017YFB0702800)the National Natural Science Foundation of China (21673295)~~
文摘The reaction mechanism of zeolite- or zeotype-catalyzed methanol-to-olefins(MTO) conversion is still a subject of debate. Employing periodic density functional theory calculations, the olefin-based cycle was studied using tetramethylethene(TME) as a representative olefinic hydrocarbon pool in H-SAPO-18 zeotype. The overall free energy barrier at 673 K was calculated and found to be less than 150 kJ/mol in the TME-based cycle, much lower than those in the aromatic-based cycle(〉 200 kJ/mol), indicating that olefins themselves are the dominant active hydrocarbon pool species in H-SAPO-18. The similarity of the intermediates involved between the aromatic-based cycle and the olefin-based cycle was also highlighted, revealing that both cycles were pattern-consistent. The selectivity related to the distribution of cracking precursors, such as higher olefins or carbenium ions, as a result of the olefin-based cycle for the MTO conversion. The enthalpy barrier of the crack-ing step scaled linearly with the number of carbon atoms of cracking precursors to produce ethene or propene with ethene being much less favored than propene for cracking of C7 and higher pre-cursors. This work highlighted the importance of the olefin-based cycle in H-SAPO-18 for the MTO conversion and established the similarity between the olefin-based and aromatic-based cycles.
文摘The interpersonal function in Halliday's system-functional grammar can instruct and apply to many-sided language communication.The article is aimed at analyzing language function reflected in the conversations between international students in different cultural background and native speakers,and then getting reflections on classroom teaching language.
基金The Important Project of Knowledge Innovation Engineering of Chinese Academy of Sciences:the Pilot Project of Farmland-conservation and Modern Sustainable High Efficiency Agriculturethe Second Subject:the Regulation Mechanism for Requisition-compensation Balance of Cultivated Land and the Pilot Study on Productive Farmland Conservation in Yucheng,Shandong Provincethe Seventh Special Topic:the Strategic Research on Farmland-conservation and Agriculture Sustainable Development in Shandong Province
文摘It is of practical significance for the decision-making on country food security and farmland protection to analyze the conversion margins for the major uses of agricultural land and their variations. Based on the panel data of wheat, corn, vegetable, fruit, and forests productions from 520 investigated farmer households of 13 investigated villages in Shandong Province from 2003 to 2009, and using Cobb-Douglas production function, the revenue conversion margins can be obtained separately, between different grain-crops (wheat, corn) and different non-grain crops (vegetable, fruit, forests), and the conversion relationship between growing grain( wheat, corn) and going out for non-farm work. The results show that from 2003 to 2009, growing wheat and corn are more economically and reasonably for farmers, compared with growing vegetable, but growing wheat and corn are becoming less economically and less reasonably day by day, compared with planting forests. Moreover, the conversion margin between wheat and fruit shows obvious scissors difference. Just from 2007, farm- ers' growing fruit became economically and reasonably, but until 2009, compared with going out to work after abandoning farm- land, growing wheat had no economic rationality. From 2003 to 2009, farmers' growing corn is more profitable than growing fruit and going out for non-farm work after abandoning farmland. The subsidies for wheat and corn have increased farmers' comparative income from food production remarkably, but the subsidies cannot change the general tendency that farmers transform food (wheat, corn) production into non-food (especially forests) production. The revenue difference between growing wheat, corn and vegetable and growing fruit and forests is being pulled ceaselessly bigger, and the tendency that farmers transform wheat, corn and vegetable growing lands into fruit and forests growing lands has become increasingly apparent.
基金supported by National Natural Science Foundation of China: Welfare Measuring and Balancing of Different Interest Groups during Rural-urban Land Conversion (Grant No. 70773047)Special Fund of Doctoral Disciplines in Ministry of Education of China: Research on Value Choice and Exterior Factors of Rural-urban Land Conversion (Grant No. 20070504020)
文摘Rural-urban land conversion is currently a common social economic phenomenon during the process of economic development and rural urbanization in China. Rural-urban land conversion is positively effective as far as social and economic benefits are concerned (Yang, 2002), but its negative effect is also evident, resulting in such problems as low efficiency of rural land configuration and loss of social welfare. Consequently, farm-ers should also have an equal chance to enjoy the social welfare enhanced by land conversion. Based on the theories of welfare economy, this paper puts forward policy suggestions by discussing the welfare changes of various interest groups, builds the model of welfare distribution, and analyzes the conditions of maximizing social welfare. The absolute and opposite value of social welfare is closely related with the speed of rural-urban land conversion, and governments should give farmers and collectives fair compensa-tion to make up for the utility loss caused by land expropriation, which are conclusions drawn from this paper. This study aims to provide a theoretical basis for regulating targets and evaluation criteria, realizing the mechanism and implementation of public po-lices during rural-urban land conversion.
文摘The present study analyzes the phenomenon of intentional misinterpretation in verbal communication and its communicative functions. In human verbal communication, misunderstanding occurs when the hearer’s understanding of the speaker’s utterances is not identical with the speaker’s intended one. However, in some cases, the hearer may intentionally choose the interpretation diverging from the speaker’s intended meaning in order to achieve certain communicative effects. This kind of linguistic phenomenon can be called intentional misinterpretation, which performs various functions in human daily conversation.
文摘As an indispensable part of medical practice.doctor-patient conversation is drawing more and more attention in the field of sociology,psychology and linguistics.Little attention,however,has been paid to the interpersonal aspect of the conversation between doctors and patients,which is regarded as one of the most complex interpersonal relationships.Being dominant in the interaction,doctors'words,mainly in the form of questions,deserve more studies,especially for the interpersonal functions delivered.This study mainly focuses on this aspect.
文摘This paper presents a closed-loop vector control structure based on adaptive Fuzzy Logic Sliding Mode Controller (FL-SMC) for a grid-connected Wave Energy Conversion System (WECS) driven Self-Excited Induction Generator (SEIG). The aim of the developed control method is to automatically tune and optimize the scaling factors and the membership functions of the Fuzzy Logic Controllers (FLC) using Multi-Objective Genetic Algorithms (MOGA) and Multi-Objective Particle Swarm Optimization (MOPSO). Two Pulse Width Modulated voltage source PWM converters with a carrier-based Sinusoidal PWM modulation for both Generator- and Grid-side converters have been connected back to back between the generator terminals and utility grid via common DC link. The indirect vector control scheme is implemented to maintain balance between generated power and power supplied to the grid and maintain the terminal voltage of the generator and the DC bus voltage constant for variable rotor speed and load. Simulation study has been carried out using the MATLAB/Simulink environment to verify the robustness of the power electronics converters and the effectiveness of proposed control method under steady state and transient conditions and also machine parameters mismatches. The proposed control scheme has improved the voltage regulation and the transient performance of the wave energy scheme over a wide range of operating conditions.
文摘The functional analysis of interruption is of great necessity in carrying out a smooth conversation.By exemplifying interruptions in specific conversational situations identified in Friends,the paper has explored the relative,interactive,pluralistic and situational characteristics of functions of interruptions.
文摘以双馈风力发电系统(doubly-fed induction generator based wind energy conversion system,DFIG-based WECS)为例,利用小信号分析法推导出由风机、双质量块传动链构成的动力与传动系统通用传递函数方程。动力与传动系统传递函数的零极点位置、稳定性与系统参数及系统运行工作点相关。该传递函数可进一步分解为扭转分量和非扭转分量。传动链参数仅对扭转分量造成影响。在此基础上,建立了考虑动力传动、电机、变流器、控制等环节的风力发电系统传递函数模型。模型综合了各环节参数,可直观反映系统参数对系统响应的影响,有助于深入了解系统动态行为。算例及时域仿真结果证明了所提出传递函数模型的准确性和高效性,可为系统参数设计研究提供理论依据。