Aiming at solving the problems of response lag and lack of precision and stability in constant grinding force control of industrial robot belts,a constant force control strategy combining fuzzy control and proportion ...Aiming at solving the problems of response lag and lack of precision and stability in constant grinding force control of industrial robot belts,a constant force control strategy combining fuzzy control and proportion integration differentiation(PID)was proposed by analyzing the signal transmission process and the dynamic characteristics of the grinding mechanism.The simulation results showed that compared with the classical PID control strategy,the system adjustment time was shortened by 98.7%,the overshoot was reduced by 5.1%,and the control error was 0.2%-0.5%when the system was stabilized.The optimized fuzzy control system had fast adjustment speeds,precise force control and stability.The experimental analysis of the surface morphology of the machined blade was carried out by the industrial robot abrasive grinding mechanism,and the correctness of the theoretical analysis and the effectiveness of the control strategy were verified.展开更多
The technology of attitude control for quadrotor unmanned aerial vehicles(UAVs) is one of the most important UAVs' research areas.In order to achieve a satisfactory operation in quadrotor UAVs having proportional ...The technology of attitude control for quadrotor unmanned aerial vehicles(UAVs) is one of the most important UAVs' research areas.In order to achieve a satisfactory operation in quadrotor UAVs having proportional integration differential(PID) controllers,it is necessary to appropriately adjust the controller coefficients which are dependent on dynamic parameters of the quadrotor UAV and any changes in parameters and conditions could affect desired performance of the controller.In this paper,combining with PID control and fuzzy logic control,a kind of fuzzy self-adaptive PID control algorithm for attitude stabilization of the quadrotor UAV was put forward.Firstly,the nonlinear model of six degrees of freedom(6-DOF) for quadrotor UAV is established.Secondly,for obtaining the attitude of quadrotor,attitude data fusion using complementary filtering is applied to improving the measurement accuracy and dynamic performance.Finally,the attitude stabilization control simulation model of the quadrotor UAV is build,and the self-adaptive fuzzy parameter tuning rules for PID attitude controller are given,so as to realize the online self-tuning of the controller parameters.Simulation results show that comparing with the conventional PID controller,this attitude control algorithm of fuzzy self-adaptive PID has a better dynamic response performance.展开更多
A closed-chain robot has several advantages over an open-chain robot, such as high mechanical rigidity, high payload, high precision. Accurate trajectory control of a robot is essential in practical-use. This paper pr...A closed-chain robot has several advantages over an open-chain robot, such as high mechanical rigidity, high payload, high precision. Accurate trajectory control of a robot is essential in practical-use. This paper presents an adaptive proportional integral differential (PID) control algorithm based on radial basis function (RBF) neural network for trajectory tracking of a two-degree-of-freedom (2-DOF) closed-chain robot. In this scheme, an RBF neural network is used to approximate the unknown nonlinear dynamics of the robot, at the same time, the PID parameters can be adjusted online and the high precision can be obtained. Simulation results show that the control algorithm accurately tracks a 2-DOF closed-chain robot trajectories. The results also indicate that the system robustness and tracking performance are superior to the classic PID method.展开更多
常规的轧钢加热炉煤气智能燃烧控制方法主要使用Fuzzy双交叉限幅控制器进行控制阶跃响应,易受温变超调作用的影响,导致燃烧效率偏低。基于此,提出一种基于比例-积分-微分(Proportion Integral Differential,PID)算法的轧钢加热炉煤气智...常规的轧钢加热炉煤气智能燃烧控制方法主要使用Fuzzy双交叉限幅控制器进行控制阶跃响应,易受温变超调作用的影响,导致燃烧效率偏低。基于此,提出一种基于比例-积分-微分(Proportion Integral Differential,PID)算法的轧钢加热炉煤气智能燃烧控制方法。生成轧钢加热炉煤气智能燃烧控制策略,利用PID算法设计轧钢加热炉煤气智能燃烧控制器,从而实现轧钢加热炉煤气智能燃烧控制。实验结果表明,设计的轧钢加热炉煤气智能燃烧PID算法控制方法在不同控制起始时间下的煤气智能燃烧效率均较高,控制性能良好,具有较高的实际应用价值。展开更多
为提高井下作业质量,实现对钻机在工作中转速的精确、高效控制,以某煤矿工程为例,开展其井下作业过程自动化钻机钻速模糊比例-积分-微分(Proportion Integral Differential,PID)自适应控制方法的设计研究。根据钻机的动力系统,建立钻机...为提高井下作业质量,实现对钻机在工作中转速的精确、高效控制,以某煤矿工程为例,开展其井下作业过程自动化钻机钻速模糊比例-积分-微分(Proportion Integral Differential,PID)自适应控制方法的设计研究。根据钻机的动力系统,建立钻机动力函数,计算钻机推力,建立煤矿井下自动化钻机数学模型。将输入变量(转速误差、误差变化率)精确值转换为模糊集合的隶属度,设计基于模糊PID的钻机转速输入控制。在钻机上安装多种传感器,实时监测钻机的各项工作参数,利用模糊PID控制器,进行自动化钻机转速的自适应调节。对比实验结果表明:设计的方法可以实现对钻机转速的快速、准确控制,保证钻进速度的稳定性。展开更多
针对压电柔性机械臂运行过程中的弹性振动问题,提出了基于粒子群优化算法(particle swarm optimization,简称PSO)自整定比例积分微分(proportional integral differential,简称PID)控制器参数的柔性臂振动抑制方法。采用标准粒子群优化...针对压电柔性机械臂运行过程中的弹性振动问题,提出了基于粒子群优化算法(particle swarm optimization,简称PSO)自整定比例积分微分(proportional integral differential,简称PID)控制器参数的柔性臂振动抑制方法。采用标准粒子群优化算法,以时间乘绝对误差积(integrated time and absolute error,简称ITAE)准则为适应度函数,整定PID控制器的3个控制参数Kp,Ki和Kd,并采用Matlab Simulink平台建立双连杆压电柔性机械臂振动控制仿真模型,研制基于虚拟仪器技术的柔性臂振动控制试验系统。仿真与试验结果表明,采用常规PID控制算法和基于PSO自整定的PID控制算法均能有效地抑制柔性机械臂的弹性振动,但后者的振动抑制效果、鲁棒性与稳定性优于前者。展开更多
基金Civil Project of China Aerospace Science and Technology CorporationUniversity-Industry Collaborative Education Program of Ministry of Education of China(No.220906517214433)。
文摘Aiming at solving the problems of response lag and lack of precision and stability in constant grinding force control of industrial robot belts,a constant force control strategy combining fuzzy control and proportion integration differentiation(PID)was proposed by analyzing the signal transmission process and the dynamic characteristics of the grinding mechanism.The simulation results showed that compared with the classical PID control strategy,the system adjustment time was shortened by 98.7%,the overshoot was reduced by 5.1%,and the control error was 0.2%-0.5%when the system was stabilized.The optimized fuzzy control system had fast adjustment speeds,precise force control and stability.The experimental analysis of the surface morphology of the machined blade was carried out by the industrial robot abrasive grinding mechanism,and the correctness of the theoretical analysis and the effectiveness of the control strategy were verified.
基金National Natural Science Foundation of China(No.61374114)Natural Science Foundation of Liaoning Province,China(No.2015020022)the Fundamental Research Funds for the Central Universities,China(No.3132015039)
文摘The technology of attitude control for quadrotor unmanned aerial vehicles(UAVs) is one of the most important UAVs' research areas.In order to achieve a satisfactory operation in quadrotor UAVs having proportional integration differential(PID) controllers,it is necessary to appropriately adjust the controller coefficients which are dependent on dynamic parameters of the quadrotor UAV and any changes in parameters and conditions could affect desired performance of the controller.In this paper,combining with PID control and fuzzy logic control,a kind of fuzzy self-adaptive PID control algorithm for attitude stabilization of the quadrotor UAV was put forward.Firstly,the nonlinear model of six degrees of freedom(6-DOF) for quadrotor UAV is established.Secondly,for obtaining the attitude of quadrotor,attitude data fusion using complementary filtering is applied to improving the measurement accuracy and dynamic performance.Finally,the attitude stabilization control simulation model of the quadrotor UAV is build,and the self-adaptive fuzzy parameter tuning rules for PID attitude controller are given,so as to realize the online self-tuning of the controller parameters.Simulation results show that comparing with the conventional PID controller,this attitude control algorithm of fuzzy self-adaptive PID has a better dynamic response performance.
基金Project supported bY the National Natural Science Foundation of China (Grant No.50375085), and the Natural Science Foundation of Shandong Province (Grant No.Y2002F13)
文摘A closed-chain robot has several advantages over an open-chain robot, such as high mechanical rigidity, high payload, high precision. Accurate trajectory control of a robot is essential in practical-use. This paper presents an adaptive proportional integral differential (PID) control algorithm based on radial basis function (RBF) neural network for trajectory tracking of a two-degree-of-freedom (2-DOF) closed-chain robot. In this scheme, an RBF neural network is used to approximate the unknown nonlinear dynamics of the robot, at the same time, the PID parameters can be adjusted online and the high precision can be obtained. Simulation results show that the control algorithm accurately tracks a 2-DOF closed-chain robot trajectories. The results also indicate that the system robustness and tracking performance are superior to the classic PID method.
文摘常规的轧钢加热炉煤气智能燃烧控制方法主要使用Fuzzy双交叉限幅控制器进行控制阶跃响应,易受温变超调作用的影响,导致燃烧效率偏低。基于此,提出一种基于比例-积分-微分(Proportion Integral Differential,PID)算法的轧钢加热炉煤气智能燃烧控制方法。生成轧钢加热炉煤气智能燃烧控制策略,利用PID算法设计轧钢加热炉煤气智能燃烧控制器,从而实现轧钢加热炉煤气智能燃烧控制。实验结果表明,设计的轧钢加热炉煤气智能燃烧PID算法控制方法在不同控制起始时间下的煤气智能燃烧效率均较高,控制性能良好,具有较高的实际应用价值。
文摘为提高井下作业质量,实现对钻机在工作中转速的精确、高效控制,以某煤矿工程为例,开展其井下作业过程自动化钻机钻速模糊比例-积分-微分(Proportion Integral Differential,PID)自适应控制方法的设计研究。根据钻机的动力系统,建立钻机动力函数,计算钻机推力,建立煤矿井下自动化钻机数学模型。将输入变量(转速误差、误差变化率)精确值转换为模糊集合的隶属度,设计基于模糊PID的钻机转速输入控制。在钻机上安装多种传感器,实时监测钻机的各项工作参数,利用模糊PID控制器,进行自动化钻机转速的自适应调节。对比实验结果表明:设计的方法可以实现对钻机转速的快速、准确控制,保证钻进速度的稳定性。
文摘针对压电柔性机械臂运行过程中的弹性振动问题,提出了基于粒子群优化算法(particle swarm optimization,简称PSO)自整定比例积分微分(proportional integral differential,简称PID)控制器参数的柔性臂振动抑制方法。采用标准粒子群优化算法,以时间乘绝对误差积(integrated time and absolute error,简称ITAE)准则为适应度函数,整定PID控制器的3个控制参数Kp,Ki和Kd,并采用Matlab Simulink平台建立双连杆压电柔性机械臂振动控制仿真模型,研制基于虚拟仪器技术的柔性臂振动控制试验系统。仿真与试验结果表明,采用常规PID控制算法和基于PSO自整定的PID控制算法均能有效地抑制柔性机械臂的弹性振动,但后者的振动抑制效果、鲁棒性与稳定性优于前者。