LiNi_(0.5)Mn_(1.5)O_(4) and LiMn_(2)O_(4) with novel spinel morphology were synthesized by a hydrothermal and postcalcination process.The synthesized LiMn_(2)O_(4) particles(5–10 lm)are uniform hexahedron,while the L...LiNi_(0.5)Mn_(1.5)O_(4) and LiMn_(2)O_(4) with novel spinel morphology were synthesized by a hydrothermal and postcalcination process.The synthesized LiMn_(2)O_(4) particles(5–10 lm)are uniform hexahedron,while the LiNi_(0.5)Mn_(1.5)O_(4) has spindle-like morphology with the long axis 10–15 lm,short axis 5–8 lm.Both LiMn_(2)O_(4) and LiNi_(0.5)Mn_(1.5)O_(4) show high capacity when used as cathode materials for Li-ion batteries.In the voltage range of 2.5–5.5 V at room temperature,the LiNi_(0.5)Mn_(1.5)O_(4) has a high discharge capacity of 135.04 mA·h·g^(-1) at 20 mAg^(-1),which is close to 147 mA·h·g^(-1)(theoretical capacity of LiNi_(0.5)Mn_(1.5)O_(4)).The discharge capacity of LiMn_(2)O_(4) is 131.08 mA·h·g^(-1) at 20 mAg^(-1).Moreover,the LiNi_(0.5)Mn_(1.5)O_(4) shows a higher capacity retention(76%)compared to that of LiMn_(2)O_(4)(61%)after 50 cycles.The morphology and structure of LiMn_(2)O_(4) and LiNi_(0.5)Mn_(1.5)O_(4) are well kept even after cycling as demonstrated by SEM and XRD on cycled LiMn_(2)O_(4) and LiNi_(0.5)Mn_(1.5)O_(4) electrodes.展开更多
Plant species exhibit substantial variation in leaf morphology.VWe isolated a recessive mutant gene termed small and cordate leaf 1(sclh)that causes alteration in both leaf size and shape of cucumber.Compared to wil...Plant species exhibit substantial variation in leaf morphology.VWe isolated a recessive mutant gene termed small and cordate leaf 1(sclh)that causes alteration in both leaf size and shape of cucumber.Compared to wild type leaves,the sclh mutant had fewer numbers of epidermal pavement cells.A single nucleotide polymorphism was associated with this leaf phenotype,which occurred in a putative nucleoside bisphosphate phosphatase.RNA-seq analysis of the wild type and sclh mutant leaves suggested that SCL;regulation may not involve known hormonal pathways.Our work identified a candidate gene for SCL;that may play a role in leaf development.展开更多
基金the National Natural Science Foundation of China(52022109 and 51834008)Beijing Municipal Natural Science Foundation(2202047)+1 种基金Science Foundation of China University of Petroleum,Beijing(2462018YJRC041 and 2462020YXZZ016)the Opening Project of State Key Laboratory of Advanced Chemical Power Sources(SKL-ACPS-C-20).
文摘LiNi_(0.5)Mn_(1.5)O_(4) and LiMn_(2)O_(4) with novel spinel morphology were synthesized by a hydrothermal and postcalcination process.The synthesized LiMn_(2)O_(4) particles(5–10 lm)are uniform hexahedron,while the LiNi_(0.5)Mn_(1.5)O_(4) has spindle-like morphology with the long axis 10–15 lm,short axis 5–8 lm.Both LiMn_(2)O_(4) and LiNi_(0.5)Mn_(1.5)O_(4) show high capacity when used as cathode materials for Li-ion batteries.In the voltage range of 2.5–5.5 V at room temperature,the LiNi_(0.5)Mn_(1.5)O_(4) has a high discharge capacity of 135.04 mA·h·g^(-1) at 20 mAg^(-1),which is close to 147 mA·h·g^(-1)(theoretical capacity of LiNi_(0.5)Mn_(1.5)O_(4)).The discharge capacity of LiMn_(2)O_(4) is 131.08 mA·h·g^(-1) at 20 mAg^(-1).Moreover,the LiNi_(0.5)Mn_(1.5)O_(4) shows a higher capacity retention(76%)compared to that of LiMn_(2)O_(4)(61%)after 50 cycles.The morphology and structure of LiMn_(2)O_(4) and LiNi_(0.5)Mn_(1.5)O_(4) are well kept even after cycling as demonstrated by SEM and XRD on cycled LiMn_(2)O_(4) and LiNi_(0.5)Mn_(1.5)O_(4) electrodes.
基金supported by grants from National Natural Science Foundation of China(31601773)
文摘Plant species exhibit substantial variation in leaf morphology.VWe isolated a recessive mutant gene termed small and cordate leaf 1(sclh)that causes alteration in both leaf size and shape of cucumber.Compared to wild type leaves,the sclh mutant had fewer numbers of epidermal pavement cells.A single nucleotide polymorphism was associated with this leaf phenotype,which occurred in a putative nucleoside bisphosphate phosphatase.RNA-seq analysis of the wild type and sclh mutant leaves suggested that SCL;regulation may not involve known hormonal pathways.Our work identified a candidate gene for SCL;that may play a role in leaf development.