期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
融合变异策略的自适应蝴蝶优化算法 被引量:7
1
作者 刘凯 代永强 《计算机应用研究》 CSCD 北大核心 2022年第1期134-140,145,共8页
蝴蝶优化算法是近年来提出的一种新型自然启发式算法。针对基本蝴蝶优化算法收敛速度慢、求解精度低、稳定性差等问题,提出了一种融合变异策略的自适应蝴蝶优化算法。通过引入动态调整转换概率策略,利用迭代次数和个体适应度的变化信息... 蝴蝶优化算法是近年来提出的一种新型自然启发式算法。针对基本蝴蝶优化算法收敛速度慢、求解精度低、稳定性差等问题,提出了一种融合变异策略的自适应蝴蝶优化算法。通过引入动态调整转换概率策略,利用迭代次数和个体适应度的变化信息动态调整转换概率,有效维持了算法全局探索与局部搜索的平衡;通过引入自适应惯性权重策略和局部变异策略,利用惯性权重值和混沌记忆权重因子进一步提高了算法的多样性,有效避免算法早熟收敛,同时加快了算法的收敛速度和求解精度。利用改进算法对12个基准测试函数进行仿真实验,与基本蝴蝶优化算法、粒子群算法、樽海鞘群算法、灰狼优化算法等其他算法对比表明,改进算法具有收敛速度快、寻优精度高、稳定性强等优异性能。 展开更多
关键词 自然启发式算法 蝴蝶优化算法 自适应惯性权重 变异策略
下载PDF
BAS-ADAM:An ADAM Based Approach to Improve the Performance of Beetle Antennae Search Optimizer 被引量:28
2
作者 Ameer Hamza Khan Xinwei Cao +2 位作者 Shuai Li Vasilios N.Katsikis Liefa Liao 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2020年第2期461-471,共11页
In this paper,we propose enhancements to Beetle Antennae search(BAS)algorithm,called BAS-ADAIVL to smoothen the convergence behavior and avoid trapping in localminima for a highly noin-convex objective function.We ach... In this paper,we propose enhancements to Beetle Antennae search(BAS)algorithm,called BAS-ADAIVL to smoothen the convergence behavior and avoid trapping in localminima for a highly noin-convex objective function.We achieve this by adaptively adjusting the step-size in each iteration using the adaptive moment estimation(ADAM)update rule.The proposed algorithm also increases the convergence rate in a narrow valley.A key feature of the ADAM update rule is the ability to adjust the step-size for each dimension separately instead of using the same step-size.Since ADAM is traditionally used with gradient-based optimization algorithms,therefore we first propose a gradient estimation model without the need to differentiate the objective function.Resultantly,it demonstrates excellent performance and fast convergence rate in searching for the optimum of noin-convex functions.The efficiency of the proposed algorithm was tested on three different benchmark problems,including the training of a high-dimensional neural network.The performance is compared with particle swarm optimizer(PSO)and the original BAS algorithm. 展开更多
关键词 Adaptive moment estimation(ADAM) Beetle antennae search(BAM) gradient estimation metaheuristic optimization nature-inspired algorithms neural network
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部