The author, in a series of previous articles, designed the “AB Dome” made of transparent thin film supported by a small additional air overpressure for the purpose of covering a city or other important large install...The author, in a series of previous articles, designed the “AB Dome” made of transparent thin film supported by a small additional air overpressure for the purpose of covering a city or other important large installations or sub-regions. In present article the author offers a variation in which a damaged nuclear station can be quickly covered by such a cheap inflatable dome. By containing the radioactive dust from the damaged nuclear station, the danger zone is reduced to about 2 km2 rather than large regions which requires the resettlement of huge masses of people and which stops indus-try in large areas. If there is a big city (as Tokyo) near the nuclear disaster or there is already a dangerous amount of radioactive dust near a city, the city may also be covered by a large inflatable transparent Dome. The building of a gi-gantic inflatable AB Dome over an empty flat surface is not difficult. The cover is spread on a flat surface and a venti-lator (fan system) pumps air under the film cover and lifts the new dome into place but inflation takes many hours. However, to cover a city, garden, forest or other obstacle course in contrast to an empty, mowed field, the thin film cannot be easily deployed over building or trees without risking damage to it by snagging and other complications. This article proposes a new method which solves this problem. The design is a double film blanket filled by light gas such as, methane, hydrogen, or helium - although of these, methane will be the most practical and least likely to leak. Sections of this AB Blanket are lighter than air and will rise in the atmosphere. They can be made on a flat area serving as an as-sembly area and delivered by dirigible or helicopter to station at altitude over the city. Here they connect to the already assembled AB Blanket subassemblies, cover the city in an AB Dome and protect it from bad weather, chemical, bio-logical and radioactive fallout or particulates. After assembly of the dome is completed, the light gas can be replaced by (heavier but cheaper) air. Two projects for Tokyo (Japan) and Moscow (Russia) are used in this paper for sample computation.展开更多
目的分析俄罗斯三防部队(Russian nuclear, biological and chemical protection troops, Russian NBC Troops)在应对卫生安全危机中的行动,为提高我军卫勤力量应对卫生安全危机的综合能力提供借鉴。方法通过研究俄罗斯三防部队的基本...目的分析俄罗斯三防部队(Russian nuclear, biological and chemical protection troops, Russian NBC Troops)在应对卫生安全危机中的行动,为提高我军卫勤力量应对卫生安全危机的综合能力提供借鉴。方法通过研究俄罗斯三防部队的基本情况、应对卫生危机的行动内容与背景,探索提高我军卫勤力量应对卫生安全危机能力的途径。结果俄罗斯三防部队已经超越传统核、生、化防护部队,成为俄罗斯应对卫生与生物安全危机的支柱之一。通过加强卫生与生物研发能力、提高装备现代化程度以及参与跨国行动锻炼了俄罗斯三防部队实战能力。结论通过借鉴俄罗斯三防部队的经验,可建立维护卫生与生物安全的综合性卫勤队伍,提升卫生与生物安全防御能力,加强国际卫生与生物安全合作交流,提升应对卫生安全危机的实战能力。展开更多
文摘The author, in a series of previous articles, designed the “AB Dome” made of transparent thin film supported by a small additional air overpressure for the purpose of covering a city or other important large installations or sub-regions. In present article the author offers a variation in which a damaged nuclear station can be quickly covered by such a cheap inflatable dome. By containing the radioactive dust from the damaged nuclear station, the danger zone is reduced to about 2 km2 rather than large regions which requires the resettlement of huge masses of people and which stops indus-try in large areas. If there is a big city (as Tokyo) near the nuclear disaster or there is already a dangerous amount of radioactive dust near a city, the city may also be covered by a large inflatable transparent Dome. The building of a gi-gantic inflatable AB Dome over an empty flat surface is not difficult. The cover is spread on a flat surface and a venti-lator (fan system) pumps air under the film cover and lifts the new dome into place but inflation takes many hours. However, to cover a city, garden, forest or other obstacle course in contrast to an empty, mowed field, the thin film cannot be easily deployed over building or trees without risking damage to it by snagging and other complications. This article proposes a new method which solves this problem. The design is a double film blanket filled by light gas such as, methane, hydrogen, or helium - although of these, methane will be the most practical and least likely to leak. Sections of this AB Blanket are lighter than air and will rise in the atmosphere. They can be made on a flat area serving as an as-sembly area and delivered by dirigible or helicopter to station at altitude over the city. Here they connect to the already assembled AB Blanket subassemblies, cover the city in an AB Dome and protect it from bad weather, chemical, bio-logical and radioactive fallout or particulates. After assembly of the dome is completed, the light gas can be replaced by (heavier but cheaper) air. Two projects for Tokyo (Japan) and Moscow (Russia) are used in this paper for sample computation.
文摘目的分析俄罗斯三防部队(Russian nuclear, biological and chemical protection troops, Russian NBC Troops)在应对卫生安全危机中的行动,为提高我军卫勤力量应对卫生安全危机的综合能力提供借鉴。方法通过研究俄罗斯三防部队的基本情况、应对卫生危机的行动内容与背景,探索提高我军卫勤力量应对卫生安全危机能力的途径。结果俄罗斯三防部队已经超越传统核、生、化防护部队,成为俄罗斯应对卫生与生物安全危机的支柱之一。通过加强卫生与生物研发能力、提高装备现代化程度以及参与跨国行动锻炼了俄罗斯三防部队实战能力。结论通过借鉴俄罗斯三防部队的经验,可建立维护卫生与生物安全的综合性卫勤队伍,提升卫生与生物安全防御能力,加强国际卫生与生物安全合作交流,提升应对卫生安全危机的实战能力。