The distribution of the nuclear ground-state spin in a two-body random ensemble(TBRE)was studied using a general classification neural network(NN)model with two-body interaction matrix elements as input features and t...The distribution of the nuclear ground-state spin in a two-body random ensemble(TBRE)was studied using a general classification neural network(NN)model with two-body interaction matrix elements as input features and the corresponding ground-state spins as labels or output predictions.The quantum many-body system problem exceeds the capability of our optimized NNs in terms of accurately predicting the ground-state spin of each sample within the TBRE.However,our NN model effectively captured the statistical properties of the ground-state spin because it learned the empirical regularity of the ground-state spin distribution in TBRE,as discovered by physicists.展开更多
By means of two typical kinds of quark energy loss parametrization and the nuclear parton distribu-tions determined only with lepton-nuclear deep inelastic scattering experimental data, a leading order analysis is per...By means of two typical kinds of quark energy loss parametrization and the nuclear parton distribu-tions determined only with lepton-nuclear deep inelastic scattering experimental data, a leading order analysis is performed on the proton-induced Drell-Yan differential cross section ratios of tungsten versus deuterium as a function of the quark momentum fraction in the beam proton and target nuclei. It is found that the theoretical results with quark energy loss are in good agreement with the experimental data. The quark energy loss effect produces approximately 3% to 11% suppression on the Drell-Yan differential cross section ratios RW/D in the range 0.05 ≤ x2 ≤ 0.3. The application of nuclear Drell-Yan data with heavy targets is remarkably subject to difficulty in the constraint of the nuclear sea quark distribution.展开更多
Proton knockout reactions are a widely used tool to study nuclear ground-state distributions. While the interpretation of traditional experiments in direct kinematics has to account for initial and final state interac...Proton knockout reactions are a widely used tool to study nuclear ground-state distributions. While the interpretation of traditional experiments in direct kinematics has to account for initial and final state interactions, experiments in inverse kinematics can overcome such limitations. We discuss results of an experiment at the BM@N setup at JINR using a <sup>12</sup>C beam at 48 GeV/c to study quasi-elastic scattering reactions, single proton distributions, and short-range correlated nucleon-nucleon pairs. The inverse kinematics allows for the direct measurement of the nucleon-nucleon pair center-of-mass motion and provides first experimental evidence for scale separation of such pairs. Based on these results, we will in the future study neutron-rich nuclei in inverse kinematics in the context of short-range correlations and neutron stars.展开更多
The precise determination of neutron distribution has important implications for both nuclear structure and nuclear astrophysics. The purpose of this paper is to study the characteristics of neutron distribution of^20...The precise determination of neutron distribution has important implications for both nuclear structure and nuclear astrophysics. The purpose of this paper is to study the characteristics of neutron distribution of^208 Pb by parity-violating electron scattering(PVS). Parity-violating asymmetries of^208 Pb with different types of neutron skins are systematically calculated and compared with the experimental data of PREx. The results indicate that the PVS experiments are very sensitive to the nuclear neutron distributions. From further PVS measurements, detailed information on nuclear neutron distributions can be extracted.展开更多
Nuclear distribution gene C (NudC) was first found in Aspergillus nidulans as an upstream regulator of NudF, whose mamma- lian homolog is Lissencephaly 1 (Lisl). NudC is conserved from fungi to mammals. Vertebrate...Nuclear distribution gene C (NudC) was first found in Aspergillus nidulans as an upstream regulator of NudF, whose mamma- lian homolog is Lissencephaly 1 (Lisl). NudC is conserved from fungi to mammals. Vertebrate NudC has three homologs: NudC, NudC-like protein (NudCL), and NudC-like protein 2 (NudCL2). All members of the NudC family share a conserved p23 domain, which possesses chaperone activity both in conjunction with and independently of heat shock protein 90 (Hsp90). Our group and the others found that NudC homologs were involved in cell cycle regulation by stabilizing the components of the LIS l/dynein complex. Additionally, NudC plays important roles in cell migration, ciliogenesis, thrombopoiesis, and the in- flammatory response. It has been reported that NudCL is essential for the stability of the dynein intermediate chain and cilio- genesis via its interaction with the dynein 2 complex. Our data showed that NudCL2 regulates the LISl/dynein pathway by stabilizing LIS 1 with Hsp90 chaperone. The fourth distantly related member of the NudC family, CML66, a tumor-associated antigen in human leukemia, contains a p23 domain and appears to promote oncogenesis by regulating the IGF-1R-MAPK sig- naling pathway. In this review, we summarize our current knowledge of the NudC family and highlight its potential clinical relevance.展开更多
基金supported by the National Natural Science Foundation of China Youth Fund(12105234)。
文摘The distribution of the nuclear ground-state spin in a two-body random ensemble(TBRE)was studied using a general classification neural network(NN)model with two-body interaction matrix elements as input features and the corresponding ground-state spins as labels or output predictions.The quantum many-body system problem exceeds the capability of our optimized NNs in terms of accurately predicting the ground-state spin of each sample within the TBRE.However,our NN model effectively captured the statistical properties of the ground-state spin because it learned the empirical regularity of the ground-state spin distribution in TBRE,as discovered by physicists.
基金Supported by National Natural Science Foundation of China(10575028)Natural Science Foundation of Hebei Province(A2008000137)
文摘By means of two typical kinds of quark energy loss parametrization and the nuclear parton distribu-tions determined only with lepton-nuclear deep inelastic scattering experimental data, a leading order analysis is performed on the proton-induced Drell-Yan differential cross section ratios of tungsten versus deuterium as a function of the quark momentum fraction in the beam proton and target nuclei. It is found that the theoretical results with quark energy loss are in good agreement with the experimental data. The quark energy loss effect produces approximately 3% to 11% suppression on the Drell-Yan differential cross section ratios RW/D in the range 0.05 ≤ x2 ≤ 0.3. The application of nuclear Drell-Yan data with heavy targets is remarkably subject to difficulty in the constraint of the nuclear sea quark distribution.
文摘Proton knockout reactions are a widely used tool to study nuclear ground-state distributions. While the interpretation of traditional experiments in direct kinematics has to account for initial and final state interactions, experiments in inverse kinematics can overcome such limitations. We discuss results of an experiment at the BM@N setup at JINR using a <sup>12</sup>C beam at 48 GeV/c to study quasi-elastic scattering reactions, single proton distributions, and short-range correlated nucleon-nucleon pairs. The inverse kinematics allows for the direct measurement of the nucleon-nucleon pair center-of-mass motion and provides first experimental evidence for scale separation of such pairs. Based on these results, we will in the future study neutron-rich nuclei in inverse kinematics in the context of short-range correlations and neutron stars.
基金Supported by the National Natural Science Foundation of China(11505292,11175085,11235001,11447226)the Shandong Provincial Natural Science Foundation,China(BS2014SF007)the Fundamental Research Funds for the Central Universities(15CX02072A,15CX02070A,15CX05026A,13CX10022A,14CX02157A)
文摘The precise determination of neutron distribution has important implications for both nuclear structure and nuclear astrophysics. The purpose of this paper is to study the characteristics of neutron distribution of^208 Pb by parity-violating electron scattering(PVS). Parity-violating asymmetries of^208 Pb with different types of neutron skins are systematically calculated and compared with the experimental data of PREx. The results indicate that the PVS experiments are very sensitive to the nuclear neutron distributions. From further PVS measurements, detailed information on nuclear neutron distributions can be extracted.
基金supported by the Ministry of Science and Technology of China (2012CB945004, 2013CB945603)Natural Scientific Foundation of China (31125017, 31190063, 31100975, 31301149, 31471259)the 111 Project (B13026)
文摘Nuclear distribution gene C (NudC) was first found in Aspergillus nidulans as an upstream regulator of NudF, whose mamma- lian homolog is Lissencephaly 1 (Lisl). NudC is conserved from fungi to mammals. Vertebrate NudC has three homologs: NudC, NudC-like protein (NudCL), and NudC-like protein 2 (NudCL2). All members of the NudC family share a conserved p23 domain, which possesses chaperone activity both in conjunction with and independently of heat shock protein 90 (Hsp90). Our group and the others found that NudC homologs were involved in cell cycle regulation by stabilizing the components of the LIS l/dynein complex. Additionally, NudC plays important roles in cell migration, ciliogenesis, thrombopoiesis, and the in- flammatory response. It has been reported that NudCL is essential for the stability of the dynein intermediate chain and cilio- genesis via its interaction with the dynein 2 complex. Our data showed that NudCL2 regulates the LISl/dynein pathway by stabilizing LIS 1 with Hsp90 chaperone. The fourth distantly related member of the NudC family, CML66, a tumor-associated antigen in human leukemia, contains a p23 domain and appears to promote oncogenesis by regulating the IGF-1R-MAPK sig- naling pathway. In this review, we summarize our current knowledge of the NudC family and highlight its potential clinical relevance.