Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes,one of the most common motifs found in gene promoters and enhancers.Over the last 30 y...Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes,one of the most common motifs found in gene promoters and enhancers.Over the last 30 years,research has revealed that the nuclear factor Y complex controls many aspects of brain development,including differentiation,axon guidance,homeostasis,disease,and most recently regeneration.However,a complete understanding of transcriptional regulatory networks,including how the nuclear factor Y complex binds to specific CCAAT boxes to perform its function remains elusive.In this review,we explore the nuclear factor Y complex’s role and mode of action during brain development,as well as how genomic technologies may expand understanding of this key regulator of gene expression.展开更多
The timing of floral transition is critical for reproductive success in flowering plants.In long-day(LD)plant Arabidopsis,the floral regulator gene FLOWERING LOCUS T(FT)is a major component of the mobile florigen.FT e...The timing of floral transition is critical for reproductive success in flowering plants.In long-day(LD)plant Arabidopsis,the floral regulator gene FLOWERING LOCUS T(FT)is a major component of the mobile florigen.FT expression is rhythmically activated by CONSTANS(CO),and specifically accumu-lated at dusk of LDs.However;the underlying mechanism of adequate regulation of FT transcription in response to day-length cues to warrant flowering time still remains to be investigated.Here,we identify a homolog of human protein arginine methyltransferases 6(HsPRMT6)in Arabidopsis,and confirm AtPRMT6 physically interacts with three positive regulators of flowering Nuclear Factors YC3(NF-YC3),NF-YC9,and NF-YB3.Further investigations find that AtPRMT6 and its encoding protein accumulate at dusk of LDs.PRMT6-mediated H3 R2me2a modification enhances the promotion of NF-YCs on FT transcription in response to inductive LD signals.Moreover,AtPRMT6 and its homologues proteins AtPRMT4a and AtPRMT4b coordinately inhibit the expression of FLOWERING LOCUS C,a suppressor of FT.Taken together,our study reveals the role of arginine methylation in photoperiodic pathway and how the PRMT6-mediating H3R2me2a system interacts with NF-CO module to dynamically control FT expression and facilitate flowering time.展开更多
Nuclear factor Y(NF-Y) is a ubiquitous transcription factor that regulates important physiological and developmental processes. In this study, we identified 34 Os NF-Y genes in rice, including 6 newly identified genes...Nuclear factor Y(NF-Y) is a ubiquitous transcription factor that regulates important physiological and developmental processes. In this study, we identified 34 Os NF-Y genes in rice, including 6 newly identified genes. Expression profile analysis covering the whole life cycle revealed that transcripts of Os NF-Y differentially accumulated in a tissue-specific,preferential or constitutive manner. In addition, gene duplication studies and expression analyses were performed to determine the evolutionary origins of the Os NF-Y gene family.Nine Os NF-Y genes were differentially expressed after treatment of seedlings with one or more abiotic stresses such as drought, salt and cold. Analysis of expression correlation and Gene Ontology annotation suggested that Os NF-Y genes were co-expressed with genes that participated in stress, accumulation of seed storage reserves, and plant development.Co-expression analysis also revealed that Os NF-Y genes might interact with each other,suggesting that NF-Y subunits formed complexes that take part in transcriptional regulation. These results provide useful information for further elucidating the function of the NF-Y family and their regulatory pathways.展开更多
探讨核因子Y(nuclear factor Y,NFY)和调节因子X1(regulatory factors that bind to the X box,RFX1)对人PNRC(proline-rich nuclear receptor coactivator)基因的调控作用及机制.根据凝胶电泳迁移率变化实验,分析NFY和RFX1与PNRC启动...探讨核因子Y(nuclear factor Y,NFY)和调节因子X1(regulatory factors that bind to the X box,RFX1)对人PNRC(proline-rich nuclear receptor coactivator)基因的调控作用及机制.根据凝胶电泳迁移率变化实验,分析NFY和RFX1与PNRC启动子区域的结合.将含有NFY和RFX1的真核表达质粒(pCMV-NFY,pCMV-RFX1)和含有PNRC启动子的荧光素酶报告基因质粒共转染HepG2细胞,检测转染细胞的荧光素酶活性,并用RT-PCR和Western印迹检测PNRC的表达情况.Quick-Change法对PNRC启动子区NFY和RFX1结合位点进行突变,将包含突变点的重组荧光素酶报告质粒与含有NFY和RFX1的真核表达质粒共同转染HepG2细胞,检测各组荧光素酶活性.结果发现,NFY和RFX1能与PNRC启动子区域特异性结合;转染pCMV-NFY和pCMV-RFX1可抑制PNRC启动子活性并下调PNRC在HepG2细胞中的表达;包含NFY和RFX1结合位点的突变质粒与pCMV-NFY和pCMV-RFX1共转染后,NFY和RFX1对PNRC启动子活性的抑制作用消失.以上结果提示,NFY和RFX1能调控PNRC基因的表达,其机制是与PNRC启动子区域的特异性结合位点相结合,发挥其反式抑制作用.展开更多
目的核转录因子Y的C亚基的反义RNA 1(nuclear transcription factor Y subunit C antisense RNA 1,NFYC⁃AS1)可能是肺腺癌的预后标志物。然而,NFYC⁃AS1的具体作用机制尚不明确,该研究拟探讨NFYC⁃AS1在肺癌细胞系中的作用机制。方法在H83...目的核转录因子Y的C亚基的反义RNA 1(nuclear transcription factor Y subunit C antisense RNA 1,NFYC⁃AS1)可能是肺腺癌的预后标志物。然而,NFYC⁃AS1的具体作用机制尚不明确,该研究拟探讨NFYC⁃AS1在肺癌细胞系中的作用机制。方法在H838细胞系中分别建立NFYC⁃AS1敲除和对照细胞株,然后进行WST⁃1/侵袭和转移/蛋白质印迹法(western blotting)实验,验证NFYC⁃AS1的功能。结果下调NFYC⁃AS1后,H838细胞系的增殖、迁移和侵袭受到抑制,自噬主要蛋白P62下调,Becline上调,同时MET和c⁃Myc蛋白的表达下调。结论NFYC⁃AS1可能在H838细胞系中经促增殖移动、抑制自噬而发挥促癌作用。展开更多
基金supported by National Health and Medical Research Council GNT1105374,GNT1137645,GNT2000766 and veski Innovation Fellowship(VIF23)to RP.
文摘Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes,one of the most common motifs found in gene promoters and enhancers.Over the last 30 years,research has revealed that the nuclear factor Y complex controls many aspects of brain development,including differentiation,axon guidance,homeostasis,disease,and most recently regeneration.However,a complete understanding of transcriptional regulatory networks,including how the nuclear factor Y complex binds to specific CCAAT boxes to perform its function remains elusive.In this review,we explore the nuclear factor Y complex’s role and mode of action during brain development,as well as how genomic technologies may expand understanding of this key regulator of gene expression.
基金the Natural National Science Foundation of China(32101786)the National Transgenic Major Program(2019ZX08010-002)+1 种基金the Fu ndamental Research Funds for Central Non-profit Scientific Institution(1610392017001)the Baichuan Project at the College of Life Science and Technology,Huazhong Agricultural University.
文摘The timing of floral transition is critical for reproductive success in flowering plants.In long-day(LD)plant Arabidopsis,the floral regulator gene FLOWERING LOCUS T(FT)is a major component of the mobile florigen.FT expression is rhythmically activated by CONSTANS(CO),and specifically accumu-lated at dusk of LDs.However;the underlying mechanism of adequate regulation of FT transcription in response to day-length cues to warrant flowering time still remains to be investigated.Here,we identify a homolog of human protein arginine methyltransferases 6(HsPRMT6)in Arabidopsis,and confirm AtPRMT6 physically interacts with three positive regulators of flowering Nuclear Factors YC3(NF-YC3),NF-YC9,and NF-YB3.Further investigations find that AtPRMT6 and its encoding protein accumulate at dusk of LDs.PRMT6-mediated H3 R2me2a modification enhances the promotion of NF-YCs on FT transcription in response to inductive LD signals.Moreover,AtPRMT6 and its homologues proteins AtPRMT4a and AtPRMT4b coordinately inhibit the expression of FLOWERING LOCUS C,a suppressor of FT.Taken together,our study reveals the role of arginine methylation in photoperiodic pathway and how the PRMT6-mediating H3R2me2a system interacts with NF-CO module to dynamically control FT expression and facilitate flowering time.
基金supported by the National Natural Science Foundation of China(Nos.31570321,30971551)
文摘Nuclear factor Y(NF-Y) is a ubiquitous transcription factor that regulates important physiological and developmental processes. In this study, we identified 34 Os NF-Y genes in rice, including 6 newly identified genes. Expression profile analysis covering the whole life cycle revealed that transcripts of Os NF-Y differentially accumulated in a tissue-specific,preferential or constitutive manner. In addition, gene duplication studies and expression analyses were performed to determine the evolutionary origins of the Os NF-Y gene family.Nine Os NF-Y genes were differentially expressed after treatment of seedlings with one or more abiotic stresses such as drought, salt and cold. Analysis of expression correlation and Gene Ontology annotation suggested that Os NF-Y genes were co-expressed with genes that participated in stress, accumulation of seed storage reserves, and plant development.Co-expression analysis also revealed that Os NF-Y genes might interact with each other,suggesting that NF-Y subunits formed complexes that take part in transcriptional regulation. These results provide useful information for further elucidating the function of the NF-Y family and their regulatory pathways.
文摘探讨核因子Y(nuclear factor Y,NFY)和调节因子X1(regulatory factors that bind to the X box,RFX1)对人PNRC(proline-rich nuclear receptor coactivator)基因的调控作用及机制.根据凝胶电泳迁移率变化实验,分析NFY和RFX1与PNRC启动子区域的结合.将含有NFY和RFX1的真核表达质粒(pCMV-NFY,pCMV-RFX1)和含有PNRC启动子的荧光素酶报告基因质粒共转染HepG2细胞,检测转染细胞的荧光素酶活性,并用RT-PCR和Western印迹检测PNRC的表达情况.Quick-Change法对PNRC启动子区NFY和RFX1结合位点进行突变,将包含突变点的重组荧光素酶报告质粒与含有NFY和RFX1的真核表达质粒共同转染HepG2细胞,检测各组荧光素酶活性.结果发现,NFY和RFX1能与PNRC启动子区域特异性结合;转染pCMV-NFY和pCMV-RFX1可抑制PNRC启动子活性并下调PNRC在HepG2细胞中的表达;包含NFY和RFX1结合位点的突变质粒与pCMV-NFY和pCMV-RFX1共转染后,NFY和RFX1对PNRC启动子活性的抑制作用消失.以上结果提示,NFY和RFX1能调控PNRC基因的表达,其机制是与PNRC启动子区域的特异性结合位点相结合,发挥其反式抑制作用.