AIM:To investigate the role of nuclear factor of activated T cell 2(NFAT2),the major NFAT protein in peripheral T cells,in sustained T cell activation and intractable inflammation in human ulcerative colitis(UC). METH...AIM:To investigate the role of nuclear factor of activated T cell 2(NFAT2),the major NFAT protein in peripheral T cells,in sustained T cell activation and intractable inflammation in human ulcerative colitis(UC). METHODS:We used two-dimensional gel-electrophoresis, immunohistochemistry,double immunohistochemical staining,and confocal microscopy to inspect the expression of NFAT2 in 107,15,48 and 5 cases of UC, Crohn's disease(CD),non-specific colitis,and 5 healthy individuals,respectively. RESULTS:Up-regulation with profound nucleo- translocation/activation of NFAT2 of lamina propria mononuclear cells(LPMC)of colonic mucosa was found specifically in the affected colonic mucosa from patients with UC,as compared to CD or NC(P<0.001,Kruskal- Wallis test).Nucleo-translocation/activation of NFAT2 primarily occurred in CD8+T,but was less prominent in CD4+T cells or CD20+B cells.It was strongly associated with the disease activity,including endoscopic stage (τ=0.2145,P=0.0281)and histologic grade(τ=0.4167, P<0.001). CONCLUSION:We disclose for the first time the nucleo-translocation/activatin of NFAT2 in lamina propria mononuclear cells in ulcerative colitis.Activation of NFAT2 was specific for ulcerative colitis and highly associated with disease activity.Since activation of NFAT2is implicated in an auto-regulatory positive feedback loop of sustained T-cell activation and NFAT proteins play key roles in the calcium/calcineurin signaling pathways,our results not only provide new insights into the mechanism for sustained intractable inflammation,but also suggest the calcium-calcineurin/NFAT pathway as a new therapeutic target for ulcerative colitis.展开更多
Objective: To investigate the role of peroxisome proliferator-activated receptors δ (PPARδ) in inflammatory reaction and its possible mechanism in adipocyte. Methods:Lentivirus-mediated RNA interference (RNAi)...Objective: To investigate the role of peroxisome proliferator-activated receptors δ (PPARδ) in inflammatory reaction and its possible mechanism in adipocyte. Methods:Lentivirus-mediated RNA interference (RNAi) was used to block the expression of PPARδ in 3T3-L1 cells. In order to induce inflammation in 3T3-L1, cells were stimulated with tumor necrosis factor-α(TNFα, 20 ng/ml) for 4 h. The expression of PPARδ, nuclear factor κB (NFκB) and C reactive protein (CRP) were determined by Western blot analysis. Results:The expression of PPARδ was reduced by 80% after RNAi. Blockage of PPARδ promoted the expression of CRP and NFκB in cells stimulated with TNFα but had no effect on normal cells. Conclusion: PPARδ is involved in inflammatory reaction in adipocyte. Blockage of PPARδ can promote the inflammation mediated by inflammatory factors and increase the expression of NFκB and CRP in 3T3-L1 cells stimulated with TNFα.展开更多
AIM: To investigate the role of TR3 in induction of apoptosis in gastric cancer cells. METHODS: Human gastric cancer cell line, MGC80-3, was used. Expression of TR3 mRNA and its protein was detected by Northern blot a...AIM: To investigate the role of TR3 in induction of apoptosis in gastric cancer cells. METHODS: Human gastric cancer cell line, MGC80-3, was used. Expression of TR3 mRNA and its protein was detected by Northern blot and Western blot. Localization of TR3 protein was showed by immunofluorescence analysis under laser-scanning confocal microscope. Apoptotic morphology was observed by DAPI fluorescence staining, and apoptotic index was counted among 1000 cells randomly. Stable transfection assay was carried out by Lipofectamine. RESULTS: Treatment of MGC80-3 cells with TPA and VP-16 resulted in apoptosis, accompanied by the repression of Bcl-2 protein in a time-dependent manner. At the same time, TPA and VP-16 also up-regulated expression level of TR3 mRNA in MGC80-3 cells that expressed TR3 mRNA. When antisense-TR3 expression vector was transfected into the cells, expression of TR3 protein was repressed. In this case, TPA and VP-16 did not induce apoptosis. In addition, TPA and VP-16-induced apoptosis involved in translocation of TR3. In MGC80-3 cells, TR3 localized concentrative in nucleus, after treatment of cells with TPA and VP-16, TR3 translocated from nucleus to cytosol obviously. However, when this nuclear translocation was blocked by LMB, apoptosis was not occurred in MGC80-3 cells even in the presence of TPA and VP-16. CONCLUSION: Induction of apoptosis by TPA and VP-16 is through induction of TR3 expression and translocation of TR3 from nucleus to cytosol, which may be a novel signal pathway for TR3, and represent the new biological function of TR3 to exert its effect on apoptosis in gastric cancer cells.展开更多
Calcium influx into neurons triggers neuronal death during cerebral ischemia/reperfusion injury.Various calcium channels are involved in cerebral ischemia/reperfusion injury.Cav3.2 channel is a main subtype of T-type ...Calcium influx into neurons triggers neuronal death during cerebral ischemia/reperfusion injury.Various calcium channels are involved in cerebral ischemia/reperfusion injury.Cav3.2 channel is a main subtype of T-type calcium channels.T-type calcium channel blockers,such as pimozide and mibefradil,have been shown to prevent cerebral ischemia/reperfusion injury-induced brain injury.However,the role of Cav3.2 channels in cerebral ischemia/reperfusion injury remains unclear.Here,in vitro and in vivo models of cerebral ischemia/reperfusion injury were established using middle cerebral artery occlusion in mice and high glucose hypoxia/reoxygenation exposure in primary hippocampal neurons.The results showed that Cav3.2 expression was significantly upregulated in injured hippocampal tissue and primary hippocampal neurons.We further established a Cav3.2 gene-knockout mouse model of cerebral ischemia/reperfusion injury.Cav3.2 knockout markedly reduced infarct volume and brain water content,and alleviated neurological dysfunction after cerebral ischemia/reperfusion injury.Additionally,Cav3.2 knockout attenuated cerebral ischemia/reperfusion injury-induced oxidative stress,inflammatory response,and neuronal apoptosis.In the hippocampus of Cav3.2-knockout mice,calcineurin overexpression offset the beneficial effect of Cav3.2 knockout after cerebral ischemia/reperfusion injury.These findings suggest that the neuroprotective function of Cav3.2 knockout is mediated by calcineurin/nuclear factor of activated T cells 3 signaling.Findings from this study suggest that Cav3.2 could be a promising target for treatment of cerebral ischemia/reperfusion injury.展开更多
Human T-cell leukemia virus type 1(HTLV-1),the first human retrovirus discovered,is the etiological agent of adult-T-cell leukemia/lymphoma.The HTLV-1 encoded Tax protein is a potent oncoprotein that deregulates gene ...Human T-cell leukemia virus type 1(HTLV-1),the first human retrovirus discovered,is the etiological agent of adult-T-cell leukemia/lymphoma.The HTLV-1 encoded Tax protein is a potent oncoprotein that deregulates gene expression by constitutively activating nuclear factor-κB(NF-κB).Tax activation of NF-κB is critical for the immortalization and survival of HTLV-1-infected T cells.In this review,we summarize the present knowledge on mechanisms underlying Tax-mediated NF-κB activation,with an emphasis on post-translational modifications of Tax.展开更多
Kaposi sarcoma-associated herpesvirus(KSHV) is necessary but not sufficient to cause Kaposi sarcoma(KS).Coinfection with human immunodeficiency virus type 1(HIV-1), in the absence of antiretroviral suppressive therapy...Kaposi sarcoma-associated herpesvirus(KSHV) is necessary but not sufficient to cause Kaposi sarcoma(KS).Coinfection with human immunodeficiency virus type 1(HIV-1), in the absence of antiretroviral suppressive therapy, drastically increases the risk of KS.Previously, we identified that HIV-1 transactivative transcription protein(Tat) was an important cofactor that activated lytic cycle replication of KSHV.Here, we further investigated the potential of Tat to influence tumorigenesis induced by KSHV Kaposin A, a product of KSHV that was encoded by the open reading frame K12(a KSHV-transforming gene).By using colony formation in soft agar, H-3-TdR incorporation, cell cycle, and microarray gene expression analyses, we demonstrated that Tat enhanced proliferation as well as mitogen-activated protein kinase, signal transducer and activator of transcription 3, and phosphatidylinositol 3-kinase/protein kinase B signaling induced by Kaposin A in NIH3T3 cells.Animal experiments further demonstrated that Tat accelerated tumorigenesis by Kaposin A in athymic nu/nu mice.Cells obtained from primary tumors of nude mice succeeded inducing tumors in immunocompetent mice.These data suggest that Tat can accelerate tumorigenesis induced by Kaposin A.Our data present the first line of evidence that Tat may participate in KS pathogenesis by collaborating with Kaposin A in acquired immunodeficiency syndrome(AIDS)-related KS(AIDS-KS) patients.Our data also suggest that the model for Kaposin and Tat-mediated oncogenesis will contribute to our understanding of the pathogenesis of AIDS-KS at the molecular level and may even be important in exploring a novel therapeutic method for AIDS-KS.展开更多
OBJECTIVE To evaluate whether the IDO1 inhibitor 1-methyl-L-tryptophan(1-MT)combine calcium influx inhibitor carboxyamidotriazole(CAI)could further enhance the suppression of programmed death 1(PD-1)in CD8^+T cells an...OBJECTIVE To evaluate whether the IDO1 inhibitor 1-methyl-L-tryptophan(1-MT)combine calcium influx inhibitor carboxyamidotriazole(CAI)could further enhance the suppression of programmed death 1(PD-1)in CD8^+T cells and investigate the curative effect of the combined use.METHODS CD8^+T cells were isolated from normal mice spleen by negative selection using magnetic cell separation.The isolated CD8^+T cells were cultured in RPMI 1640 medium containing 10%FBS and 100 U·mL^(-1)IL-2 and activated by the addition of anti-CD3 and anti-CD28(1 g·L^(-1) each mabs).CD8^+T cells were pretreated for 48 h with drug and the fluo-3 as a marker of intracellular calcium concentration was detected by flow cytometry.The calcineurin(Ca N)levels were assayed with ELISA in CD8^+T cells after 48 h incubation with 10μm CAI.The nuclear translocations of NFAT and AHR were detected by immunofluorescent staining after 48 h of drug treatment.The expression of PD-1 in CD8^+T cells was analyzed by flow cytometry.RESULTS Intracellular fluorescent intensity was markedly debase due to CAI treatment(P<0.01).Meanwhile,the changes of CaN content had a resembled correlation(P<0.01).Immunofluorescence experiment showed that after combination therapy the transfer of NFAT and AHR in nuclear substantially reduced.Flow cytometry revealed that after the combination caused a significant decrease in PD-1 expression in CD8^+T cells.CONCLUSION CAI and 1-MT could inhibit markedly the expression of PD-1 in CD8^+T cells by inhibiting the nuclear translocation of NFAT and AHR,respectively and the combination of them has synergetic effect.展开更多
基金a grant from Chang Gung Memorial Hospital,No.CMRPG33074a grant from National Science Council,Taiwan
文摘AIM:To investigate the role of nuclear factor of activated T cell 2(NFAT2),the major NFAT protein in peripheral T cells,in sustained T cell activation and intractable inflammation in human ulcerative colitis(UC). METHODS:We used two-dimensional gel-electrophoresis, immunohistochemistry,double immunohistochemical staining,and confocal microscopy to inspect the expression of NFAT2 in 107,15,48 and 5 cases of UC, Crohn's disease(CD),non-specific colitis,and 5 healthy individuals,respectively. RESULTS:Up-regulation with profound nucleo- translocation/activation of NFAT2 of lamina propria mononuclear cells(LPMC)of colonic mucosa was found specifically in the affected colonic mucosa from patients with UC,as compared to CD or NC(P<0.001,Kruskal- Wallis test).Nucleo-translocation/activation of NFAT2 primarily occurred in CD8+T,but was less prominent in CD4+T cells or CD20+B cells.It was strongly associated with the disease activity,including endoscopic stage (τ=0.2145,P=0.0281)and histologic grade(τ=0.4167, P<0.001). CONCLUSION:We disclose for the first time the nucleo-translocation/activatin of NFAT2 in lamina propria mononuclear cells in ulcerative colitis.Activation of NFAT2 was specific for ulcerative colitis and highly associated with disease activity.Since activation of NFAT2is implicated in an auto-regulatory positive feedback loop of sustained T-cell activation and NFAT proteins play key roles in the calcium/calcineurin signaling pathways,our results not only provide new insights into the mechanism for sustained intractable inflammation,but also suggest the calcium-calcineurin/NFAT pathway as a new therapeutic target for ulcerative colitis.
文摘Objective: To investigate the role of peroxisome proliferator-activated receptors δ (PPARδ) in inflammatory reaction and its possible mechanism in adipocyte. Methods:Lentivirus-mediated RNA interference (RNAi) was used to block the expression of PPARδ in 3T3-L1 cells. In order to induce inflammation in 3T3-L1, cells were stimulated with tumor necrosis factor-α(TNFα, 20 ng/ml) for 4 h. The expression of PPARδ, nuclear factor κB (NFκB) and C reactive protein (CRP) were determined by Western blot analysis. Results:The expression of PPARδ was reduced by 80% after RNAi. Blockage of PPARδ promoted the expression of CRP and NFκB in cells stimulated with TNFα but had no effect on normal cells. Conclusion: PPARδ is involved in inflammatory reaction in adipocyte. Blockage of PPARδ can promote the inflammation mediated by inflammatory factors and increase the expression of NFκB and CRP in 3T3-L1 cells stimulated with TNFα.
基金the National Outstanding Youth Science foundation of China (B type,39825502)the National Natural Science Foundation of China (39880015,30170477)the Natural Science Foundation of Fujian Province (C0110004).
文摘AIM: To investigate the role of TR3 in induction of apoptosis in gastric cancer cells. METHODS: Human gastric cancer cell line, MGC80-3, was used. Expression of TR3 mRNA and its protein was detected by Northern blot and Western blot. Localization of TR3 protein was showed by immunofluorescence analysis under laser-scanning confocal microscope. Apoptotic morphology was observed by DAPI fluorescence staining, and apoptotic index was counted among 1000 cells randomly. Stable transfection assay was carried out by Lipofectamine. RESULTS: Treatment of MGC80-3 cells with TPA and VP-16 resulted in apoptosis, accompanied by the repression of Bcl-2 protein in a time-dependent manner. At the same time, TPA and VP-16 also up-regulated expression level of TR3 mRNA in MGC80-3 cells that expressed TR3 mRNA. When antisense-TR3 expression vector was transfected into the cells, expression of TR3 protein was repressed. In this case, TPA and VP-16 did not induce apoptosis. In addition, TPA and VP-16-induced apoptosis involved in translocation of TR3. In MGC80-3 cells, TR3 localized concentrative in nucleus, after treatment of cells with TPA and VP-16, TR3 translocated from nucleus to cytosol obviously. However, when this nuclear translocation was blocked by LMB, apoptosis was not occurred in MGC80-3 cells even in the presence of TPA and VP-16. CONCLUSION: Induction of apoptosis by TPA and VP-16 is through induction of TR3 expression and translocation of TR3 from nucleus to cytosol, which may be a novel signal pathway for TR3, and represent the new biological function of TR3 to exert its effect on apoptosis in gastric cancer cells.
基金supported by the Natural Science Foundation of Anhui Province of China,No.2208085Y32Scientific Research Plan Project of Anhui Province of China,No.2022AH020076the Chen Xiao-Ping Foundation for the Development of Science and Technology of Hubei Province,No.CXPJJH12000005-07-115(all to CT).
文摘Calcium influx into neurons triggers neuronal death during cerebral ischemia/reperfusion injury.Various calcium channels are involved in cerebral ischemia/reperfusion injury.Cav3.2 channel is a main subtype of T-type calcium channels.T-type calcium channel blockers,such as pimozide and mibefradil,have been shown to prevent cerebral ischemia/reperfusion injury-induced brain injury.However,the role of Cav3.2 channels in cerebral ischemia/reperfusion injury remains unclear.Here,in vitro and in vivo models of cerebral ischemia/reperfusion injury were established using middle cerebral artery occlusion in mice and high glucose hypoxia/reoxygenation exposure in primary hippocampal neurons.The results showed that Cav3.2 expression was significantly upregulated in injured hippocampal tissue and primary hippocampal neurons.We further established a Cav3.2 gene-knockout mouse model of cerebral ischemia/reperfusion injury.Cav3.2 knockout markedly reduced infarct volume and brain water content,and alleviated neurological dysfunction after cerebral ischemia/reperfusion injury.Additionally,Cav3.2 knockout attenuated cerebral ischemia/reperfusion injury-induced oxidative stress,inflammatory response,and neuronal apoptosis.In the hippocampus of Cav3.2-knockout mice,calcineurin overexpression offset the beneficial effect of Cav3.2 knockout after cerebral ischemia/reperfusion injury.These findings suggest that the neuroprotective function of Cav3.2 knockout is mediated by calcineurin/nuclear factor of activated T cells 3 signaling.Findings from this study suggest that Cav3.2 could be a promising target for treatment of cerebral ischemia/reperfusion injury.
基金Supported by Grants from the United States Public Health Service/National Institutes of Health,No.RO1CA135362,RO1GM083143 and PO1CA128115
文摘Human T-cell leukemia virus type 1(HTLV-1),the first human retrovirus discovered,is the etiological agent of adult-T-cell leukemia/lymphoma.The HTLV-1 encoded Tax protein is a potent oncoprotein that deregulates gene expression by constitutively activating nuclear factor-κB(NF-κB).Tax activation of NF-κB is critical for the immortalization and survival of HTLV-1-infected T cells.In this review,we summarize the present knowledge on mechanisms underlying Tax-mediated NF-κB activation,with an emphasis on post-translational modifications of Tax.
文摘Kaposi sarcoma-associated herpesvirus(KSHV) is necessary but not sufficient to cause Kaposi sarcoma(KS).Coinfection with human immunodeficiency virus type 1(HIV-1), in the absence of antiretroviral suppressive therapy, drastically increases the risk of KS.Previously, we identified that HIV-1 transactivative transcription protein(Tat) was an important cofactor that activated lytic cycle replication of KSHV.Here, we further investigated the potential of Tat to influence tumorigenesis induced by KSHV Kaposin A, a product of KSHV that was encoded by the open reading frame K12(a KSHV-transforming gene).By using colony formation in soft agar, H-3-TdR incorporation, cell cycle, and microarray gene expression analyses, we demonstrated that Tat enhanced proliferation as well as mitogen-activated protein kinase, signal transducer and activator of transcription 3, and phosphatidylinositol 3-kinase/protein kinase B signaling induced by Kaposin A in NIH3T3 cells.Animal experiments further demonstrated that Tat accelerated tumorigenesis by Kaposin A in athymic nu/nu mice.Cells obtained from primary tumors of nude mice succeeded inducing tumors in immunocompetent mice.These data suggest that Tat can accelerate tumorigenesis induced by Kaposin A.Our data present the first line of evidence that Tat may participate in KS pathogenesis by collaborating with Kaposin A in acquired immunodeficiency syndrome(AIDS)-related KS(AIDS-KS) patients.Our data also suggest that the model for Kaposin and Tat-mediated oncogenesis will contribute to our understanding of the pathogenesis of AIDS-KS at the molecular level and may even be important in exploring a novel therapeutic method for AIDS-KS.
基金supported by National Natural Science Foundation of China(81402943)CAMS Major Collaborative Innovation Project(2016-I2M-1-011)PUMC Youth Fund(3332015168)
文摘OBJECTIVE To evaluate whether the IDO1 inhibitor 1-methyl-L-tryptophan(1-MT)combine calcium influx inhibitor carboxyamidotriazole(CAI)could further enhance the suppression of programmed death 1(PD-1)in CD8^+T cells and investigate the curative effect of the combined use.METHODS CD8^+T cells were isolated from normal mice spleen by negative selection using magnetic cell separation.The isolated CD8^+T cells were cultured in RPMI 1640 medium containing 10%FBS and 100 U·mL^(-1)IL-2 and activated by the addition of anti-CD3 and anti-CD28(1 g·L^(-1) each mabs).CD8^+T cells were pretreated for 48 h with drug and the fluo-3 as a marker of intracellular calcium concentration was detected by flow cytometry.The calcineurin(Ca N)levels were assayed with ELISA in CD8^+T cells after 48 h incubation with 10μm CAI.The nuclear translocations of NFAT and AHR were detected by immunofluorescent staining after 48 h of drug treatment.The expression of PD-1 in CD8^+T cells was analyzed by flow cytometry.RESULTS Intracellular fluorescent intensity was markedly debase due to CAI treatment(P<0.01).Meanwhile,the changes of CaN content had a resembled correlation(P<0.01).Immunofluorescence experiment showed that after combination therapy the transfer of NFAT and AHR in nuclear substantially reduced.Flow cytometry revealed that after the combination caused a significant decrease in PD-1 expression in CD8^+T cells.CONCLUSION CAI and 1-MT could inhibit markedly the expression of PD-1 in CD8^+T cells by inhibiting the nuclear translocation of NFAT and AHR,respectively and the combination of them has synergetic effect.