背景:基于核转录因子κB通路探究神经炎症的靶向治疗越来越值得探究,中药靶点多、范围广、机制丰富及不良反应少等优点在治疗各类疾病时都具有十分巨大的潜力。目的:基于核转录因子κB信号通路,对近年研究中出现的山奈酚、红花黄、汉黄...背景:基于核转录因子κB通路探究神经炎症的靶向治疗越来越值得探究,中药靶点多、范围广、机制丰富及不良反应少等优点在治疗各类疾病时都具有十分巨大的潜力。目的:基于核转录因子κB信号通路,对近年研究中出现的山奈酚、红花黄、汉黄芩苷及雷公藤甲素等中药单体治疗脊髓损伤后神经炎症的研究进展进行系统的阐述与归纳。方法:以“脊髓损伤,炎症,抗炎,中药单体,单体化合物,NF-κB信号通路,黄酮,糖苷,酚类,酯类,生物碱”为检索词在中国知网数据库中进行检索;以“Spinal cord injury,inflammation,anti-inflammatory,traditional Chinese medicine monomer,monomeric compound,NF-κB signaling pathway,flavonoids,glycosides,phenols,esters,alkaloids”为检索词在PubMed数据库中进行检索,最终共纳入67篇文献进行综述分析。结果与结论:①核转录因子κB信号通路在神经系统中的作用复杂多样,能够调控中性粒细胞、小胶质细胞、星形胶质细胞和巨噬细胞等,介导损伤后炎症的发生与发展;②中药单体如汉黄芩苷对核转录因子κB抑制蛋白的降解、红花黄素对核转录因子κB信号通路磷酸化过程的抑制、山奈酚对核转录因子κB信号通路p65核易位的抑制等作用可以降低炎症反应对机体造成的影响,从而促进神经功能恢复;③核转录因子κB信号通路在损伤早期能够促进炎症反应和免疫细胞迁移活化,在损伤中后期能够促进损伤部位的修复和纤维化的发生等,适当的激活核转录因子κB信号通路具有促进炎症因子的释放、提高细胞的抗氧化能力及促进免疫细胞的活化等能力,但过度激活的核转录因子κB信号通路则容易导致慢性炎症的发生和持续、细胞凋亡受到抑制等;④未来的研究可以进一步探索如何准确调控核转录因子κB信号通路的活化水平、如何实现对神经系统炎症和损伤的精准干预展开,也可围绕中药单体的制备及中药单体对信号通路的作用机制展开,以期为神经系统疾病的康复和功能恢复提供更有效的治疗策略。展开更多
●AIM:To evaluate the role of semaphorin 7A(Sema7A)and its associated regulatory mechanisms in modulating the barrier function of cultured human corneal epithelial cells(HCEs).●METHODS:Barrier models of HCEs were tre...●AIM:To evaluate the role of semaphorin 7A(Sema7A)and its associated regulatory mechanisms in modulating the barrier function of cultured human corneal epithelial cells(HCEs).●METHODS:Barrier models of HCEs were treated with recombinant human Sema7A at concentrations of 0,125,250,or 500 ng/mL for 24,48,or 72h in vitro.Transepithelial electrical resistance(TEER)as well as Dextran-fluorescein isothiocyanate(FITC)permeability assays were conducted to assess barrier function.To quantify tight junctions(TJs)such as occludin and zonula occludens-1(ZO-1)at the mRNA level,reverse transcriptionpolymerase chain reaction(RT-PCR)analysis was performed.Immunoblotting was used to examine the activity of the nuclear factor-kappa B(NF-κB)signaling pathway and the production of TJs proteins.Immunofluorescence analyses were employed to localize the TJs.Enzyme-linked immunosorbent assay(ELISA)and RT-PCR were utilized to observe changes in interleukin(IL)-1βlevels.To investigate the role of NF-κB signaling activation and IL^(-1)βin Sema7A’s anti-barrier mechanism,we employed 0.1μmol/L IκB kinase 2(IKK2)inhibitor IV or 500 ng/mL IL^(-1)receptor(IL-1R)antagonist.●RESULTS:Treatment with Sema7A resulted in decreased TEER and increased permeability of Dextran-FITC in HCEs through down-regulating mRNA and protein levels of TJs in a time-and dose-dependent manner,as well as altering the localization of TJs.Furthermore,Sema7A stimulated the activation of inhibitor of kappa B alpha(IκBα)and expression of IL-1β.The anti-barrier function of Sema7A was significantly suppressed by treatment with IKK2 inhibitor IV or IL-1R antagonists.●CONCLUSION:Sema7A disrupts barrier function through its influence on NF-κB-mediated expression of TJ proteins,as well as the expression of IL-1β.These findings suggest that Sema7A could be a potential therapeutic target for the diseases in corneal epithelium.展开更多
BACKGROUND Osteoporosis is a common metabolic bone disorder induced by an imbalance between osteoclastic activity and osteogenic activity.During osteoporosis,bone mesenchymal stem cells(BMSCs)exhibit an increased abil...BACKGROUND Osteoporosis is a common metabolic bone disorder induced by an imbalance between osteoclastic activity and osteogenic activity.During osteoporosis,bone mesenchymal stem cells(BMSCs)exhibit an increased ability to differentiate into adipocytes and a decreased ability to differentiate into osteoblasts,resulting in bone loss.Jumonji domain-containing 1C(JMJD1C)has been demonstrated to suppress osteoclastogenesis.AIM To examine the effect of JMJD1C on the osteogenesis of BMSCs and the potential underlying mechanism.METHODS BMSCs were isolated from mouse bone marrow tissues.Oil Red O staining,Alizarin red staining,alkaline phosphatase staining and the expression of adipo-genic and osteogenic-associated genes were assessed to determine the differen-tiation of BMSCs.Bone marrow-derived macrophages(BMMs)were incubated with receptor activator of nuclear factor-kappaΒligand to induce osteoclast differentiation,and osteoclast differen-tiation was confirmed by tartrate-resistant acid phosphatase staining.Other related genes were measured via reverse transcription coupled to the quantitative polymerase chain reaction and western blotting.Enzyme-linked immunosorbent assays were used to measure the levels of inflammatory cytokines,including tumor necrosis factor alpha,interleukin-6 and interleukin-1 beta.RESULTS The osteogenic and adipogenic differentiation potential of BMSCs isolated from mouse bone marrow samples was evaluated.JMJD1C mRNA and protein expression was upregulated in BMSCs after osteoblast induction,while p-nuclear factor-κB(NF-κB)and inflammatory cytokines were not significantly altered.Knockdown of JMJD1C repressed osteogenic differentiation and enhanced NF-κB activation and inflammatory cytokine release in BMSCs.Moreover,JMJD1C expression decreased during BMM osteoclast differentiation.CONCLUSION The JMJD1C/NF-κB signaling pathway is potentially involved in BMSC osteogenic differentiation and may play vital roles in the pathogenesis of osteoporosis.展开更多
The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becomi...The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becoming a significant threat to human health. More and more studies have found that Toll-like receptor 4 (TLR4), as a member of the Toll-like receptor family, can promote the generation of inflammatory factors and is closely related to the body’s immune response and inflammatory response. Nuclear factor-κB p65 (NF-κB p65) is a nuclear transcription factor that can interact with various cytokines, growth factors, and apoptotic factors, participating in processes such as oxidative stress, apoptosis, and inflammation in the body [1]. This article elaborates on the structure, function, and signaling pathways of TLR4 and NF-κB p65 proteins in the pathogenesis of otitis media, aiming to provide more precise targets and better therapeutic efficacy for the diagnosis and treatment of otitis media. The role of inflammation in disease.展开更多
The M1/M2 phenotypic shift of microglia after spinal cord injury plays an important role in the regulation of neuroinflammation during the secondary injury phase of spinal cord injury.Regulation of shifting microglia ...The M1/M2 phenotypic shift of microglia after spinal cord injury plays an important role in the regulation of neuroinflammation during the secondary injury phase of spinal cord injury.Regulation of shifting microglia polarization from M1(neurotoxic and proinflammatory type)to M2(neuroprotective and anti-inflammatory type)after spinal cord injury appears to be crucial.Tryptanthrin possesses an anti-inflammatory biological function.However,its roles and the underlying molecular mechanisms in spinal cord injury remain unknown.In this study,we found that tryptanthrin inhibited microglia-derived inflammation by promoting polarization to the M2 phenotype in vitro.Tryptanthrin promoted M2 polarization through inactivating the cGAS/STING/NF-κB pathway.Additionally,we found that targeting the cGAS/STING/NF-κB pathway with tryptanthrin shifted microglia from the M1 to M2 phenotype after spinal cord injury,inhibited neuronal loss,and promoted tissue repair and functional recovery in a mouse model of spinal cord injury.Finally,using a conditional co-culture system,we found that microglia treated with tryptanthrin suppressed endoplasmic reticulum stress-related neuronal apoptosis.Taken together,these results suggest that by targeting the cGAS/STING/NF-κB axis,tryptanthrin attenuates microglia-derived neuroinflammation and promotes functional recovery after spinal cord injury through shifting microglia polarization to the M2 phenotype.展开更多
Microglia,the resident monocyte of the central nervous system,play a crucial role in the response to spinal cord injury.However,the precise mechanism remains unclear.To investigate the molecular mechanisms by which mi...Microglia,the resident monocyte of the central nervous system,play a crucial role in the response to spinal cord injury.However,the precise mechanism remains unclear.To investigate the molecular mechanisms by which microglia regulate the neuroinflammatory response to spinal cord injury,we performed single-cell RNA sequencing dataset analysis,focusing on changes in microglial subpopulations.We found that the MG1 subpopulation emerged in the acute/subacute phase of spinal cord injury and expressed genes related to cell pyroptosis,sphingomyelin metabolism,and neuroinflammation at high levels.Subsequently,we established a mouse model of contusive injury and performed intrathecal injection of siRNA and molecular inhibitors to validate the role of ceramide synthase 5 in the neuroinflammatory responses and pyroptosis after spinal cord injury.Finally,we established a PC12-BV2 cell co-culture system and found that ceramide synthase 5 and pyroptosis-associated proteins were highly expressed to induce the apoptosis of neuron cells.Inhibiting ceramide synthase 5 expression in a mouse model of spinal cord injury effectively reduced pyroptosis.Furthermore,ceramide synthase 5-induced pyroptosis was dependent on activation of the NLRP3 signaling pathway.Inhibiting ceramide synthase 5 expression in microglia in vivo reduced neuronal apoptosis and promoted recovery of neurological function.Pla2g7 formed a“bridge”between sphingolipid metabolism and ceramide synthase 5-mediated cell death by inhibiting the NLRP3 signaling pathway.Collectively,these findings suggest that inhibiting ceramide synthase 5 expression in microglia after spinal cord injury effectively suppressed microglial pyroptosis mediated by NLRP3,thereby exerting neuroprotective effects.展开更多
In patients with Alzheimer’s disease,gamma-glutamyl transferase 5(GGT5)expression has been observed to be downregulated in cerebrovascular endothelial cells.However,the functional role of GGT5 in the development of A...In patients with Alzheimer’s disease,gamma-glutamyl transferase 5(GGT5)expression has been observed to be downregulated in cerebrovascular endothelial cells.However,the functional role of GGT5 in the development of Alzheimer’s disease remains unclear.This study aimed to explore the effect of GGT5 on cognitive function and brain pathology in an APP/PS1 mouse model of Alzheimer’s disease,as well as the underlying mechanism.We observed a significant reduction in GGT5 expression in two in vitro models of Alzheimer’s disease(Aβ_(1-42)-treated hCMEC/D3 and bEnd.3 cells),as well as in the APP/PS1 mouse model.Additionally,injection of APP/PS1 mice with an adeno-associated virus encoding GGT5 enhanced hippocampal synaptic plasticity and mitigated cognitive deficits.Interestingly,increasing GGT5 expression in cerebrovascular endothelial cells reduced levels of both soluble and insoluble amyloid-βin the brains of APP/PS1 mice.This effect may be attributable to inhibition of the expression ofβ-site APP cleaving enzyme 1,which is mediated by nuclear factor-kappa B.Our findings demonstrate that GGT5 expression in cerebrovascular endothelial cells is inversely associated with Alzheimer’s disease pathogenesis,and that GGT5 upregulation mitigates cognitive deficits in APP/PS1 mice.These findings suggest that GGT5 expression in cerebrovascular endothelial cells is a potential therapeutic target and biomarker for Alzheimer’s disease.展开更多
Concomitantly with the increase in the prevalences of overweight/obesity, nonalcoholic fatty liver disease(NAFLD) has worldwide become the main cause of chronic liver disease in both adults and children. Patients with...Concomitantly with the increase in the prevalences of overweight/obesity, nonalcoholic fatty liver disease(NAFLD) has worldwide become the main cause of chronic liver disease in both adults and children. Patients with fatty liver display features of metabolic syndrome(Met S), like insulin resistance(IR), glucose intolerance, hypertension and dyslipidemia. Recently, epidemiological studies have linked obesity, Met S, and NAFLD to decreased bone mineral density and osteoporosis, highlighting an intricate interplay among bone, adipose tissue, and liver. Osteoprotegerin(OPG), an important symbol of the receptor activator of nuclear factor-B ligand/receptor activator of nuclear factor kappa B/OPG system activation, typically considered for its role in bone metabolism, may also play critical roles in the initiation and perpetuation of obesityrelated comorbidities. Clinical data have indicated that OPG concentrations are associated with hypertension, left ventricular hypertrophy, vascular calcification, endothelial dysfunction, and severity of liver damage in chronic hepatitis C. Nonetheless, the relationship between circulating OPG and IR as a key feature of Met S as well as between OPG and NAFLD remains uncertain. Thus, the aims of the present review are to provide the existent knowledge on these associations and to discuss briefly the underlying mechanisms linking OPG and NAFLD.展开更多
BACKGROUND: The active form of nuclear factor-kappa B (NF-kappa B) is involved in the initiation, generation, and development of hepatocellular carcinoma (HCC), and is up-regulated in inflammation-associated malignanc...BACKGROUND: The active form of nuclear factor-kappa B (NF-kappa B) is involved in the initiation, generation, and development of hepatocellular carcinoma (HCC), and is up-regulated in inflammation-associated malignancies. We investigated the dynamic expression of NF-kappa B and its influences on the occurrence of HCC through antiangiogenic (thalidomide) intervention in NF-kappa B activation. METHODS : Hepatoma models were induced with 2-fluorenylacetamide (2-FAA, 0.05%) in male Sprague-Dawley rats, and thalidomide (100 mg/kg body weight) was administered intragastrically to intervene in NF-kappa B activation. The pathological changes in the liver of sacrificed rats were assessed after hematoxylin and eosin staining. NF-kappa B mRNA was amplified by RT-nested PCR. The alterations of NF-kappa B and vascular endothelial growth factor (VEGF) expression were analyzed by enzyme-linked immunosorbent assay, immunohistochemistry, and Western blotting. RESULTS: Rat hepatocytes showed denatured, precancerous, and cancerous stages in hepatocarcinogenesis, with an increasing tendency of hepatic NF-kappa B, NF-kappa B mRNA, and VEGF expression, and their values in the HCC group were higher than those in controls (P<0.001). In the thalidomide-treated group, the morphologic changes generated only punctiform denaturation and necrosis at the early or middle stages, and nodular hyperplasia or a little atypical hyperplasia at the final stages, with the expression of NF-kappa B (chi(2)=9.93, P<0.001) and VEGF (chi(2)=8.024, P<0.001) lower than that in the 2-FAA group. CONCLUSION: NF-kappa B is overexpressed in hepatocarcinogenesis and antiangiogenic treatment down-regulates the expression of NF-kappa B and VEGF, and delays the occurrence of HCC. (Hepatobiliary Pancreat Dis Int 2010; 9: 169-174)展开更多
BACKGROUND: Urinary trypsin inhibitor (UTI) inhibits the inflammatory response and protects against ischemia-reperfusion (I/R) injury. The inflammatory response is mediated by nuclear factor-kappa B (NF-kappa B) and i...BACKGROUND: Urinary trypsin inhibitor (UTI) inhibits the inflammatory response and protects against ischemia-reperfusion (I/R) injury. The inflammatory response is mediated by nuclear factor-kappa B (NF-kappa B) and its related target genes and products such as vascular endothelial cell adhesion molecule and CXC chemokines. We aimed to assess the roles of those mediators in a UTI-treated mouse model of hepatic I/R injury. METHODS: Treatment group 1 (UTI given 5 minutes prior to liver ischemia), treatment group 2 (UTI given 5 minutes after the anhepatic phase) and a control group were investigated. Blood and liver samples were obtained and compared at 1, 3, 6 and 24 hours after reperfusion. RESULTS: Attenuation of pathological hepatocellular damage was greater in the treatment groups than in the control group (P < 0.05). Compared with the control group, the UTI treatment groups showed significantly lower serum alanine aminotransferase and aspartate aminotransferase levels, decreased myeloperoxidase activity, and reduced NF-kappa B activation. Also downregulated was the expression of tumor necrosis factor-alpha, cytokine-induced neutrophil chemoattractant, and macrophage inflammatory protein-2 at the mRNA level. P-selectin protein and intercellular adhesion molecule-1 protein expression were also downregulated. In addition, the treatment group I showed a better protective effect against I/R injury than the treatment group 2. CONCLUSIONS: UTI reduces NF-kappa B activation and downregulates the expression of its related mediators, followed by the inhibition of neutrophil aggregation and infiltration in hepatic I/R injury. The protective role of UTI is more effective in prevention than in treatment.展开更多
Approximately 350 million people are estimated to be persistently infected with hepatitis B virus(HBV) worldwide. HBV maintains persistent infection by employing covalently closed circular DNA(ccc DNA), a template for...Approximately 350 million people are estimated to be persistently infected with hepatitis B virus(HBV) worldwide. HBV maintains persistent infection by employing covalently closed circular DNA(ccc DNA), a template for all HBV RNAs. Chronic hepatitis B(CHB) patients are currently treated with nucleos(t)ide analogs such as lamivudine, adefovir, entecavir, and tenofovir. However, these treatments rarely cure CHB because they are unable to inhibit ccc DNA transcription and inhibit only a late stage in the HBV life cycle(the reverse transcription step in the nucleocapsid). Therefore, an understanding of the factors regulating ccc DNA transcription is required to stop this process. Among numerous factors, hepatocyte nuclear factors(HNFs) play the most important roles in ccc DNA transcription, especially in the generation of viral genomic RNA, a template for HBV replication. Therefore, proper control of HNF function could lead to the inhibition of HBV replication. In this review, we summarize and discuss the current understanding of the roles of HNFs in the HBV life cycle and the upstream factors that regulate HNFs. This knowledge will enable the identification of new therapeutic targets to cure CHB.展开更多
BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. We analyzed the expression of miclear-transcription factor-kappa B (NF-kappa B) during hepatocarcinogenesis in order to evaluate i...BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. We analyzed the expression of miclear-transcription factor-kappa B (NF-kappa B) during hepatocarcinogenesis in order to evaluate its dynamic expression and its clinical value in the development and diagnosis of HCC. METHODS: Hepatoma models were induced by oral administration of 2-acetamidoflurene (2-FAA) to male Sprague-Dawley rats. Morphological changes were observed after hematoxylin and eosin staining. The cellular distribution of NF-kappa B expression during different stages of cancer development was investigated by immunohistochemistry, and the level of NF-kappa B expression in liver tissues was quantitatively analyzed by ELISA. The gene fragments of hepatic NF-kappa B were amplified by nested-polymerase chain reaction assay. RESULTS: Hepatocytes showed vacuole-like degeneration during the early stages, then had a hyperplastic nodal appearance during the middle stages, and finally progressed to tubercles of cancerous nests with high differentiation. The NF-kappa B-positive material was buff-colored, fine particles localized in the nucleus, and the incidence of NF-kappa B-positive cells was 81.8% in degeneration, 83.3% in precancerous lesions, and 100% in cancerous tissues. All of these values were higher than those in controls (P<0.01). Hepatic NF-kappa B expression and hepatic NF-kappa B-mRNA were also higher during the course of HCC development (P<0.01). CONCLUSION: The NF-kappa B signal transduction pathway is activated during the early stages of HCC development, and its abnormal expression may be associated with the occurrence of HCC.展开更多
文摘背景:基于核转录因子κB通路探究神经炎症的靶向治疗越来越值得探究,中药靶点多、范围广、机制丰富及不良反应少等优点在治疗各类疾病时都具有十分巨大的潜力。目的:基于核转录因子κB信号通路,对近年研究中出现的山奈酚、红花黄、汉黄芩苷及雷公藤甲素等中药单体治疗脊髓损伤后神经炎症的研究进展进行系统的阐述与归纳。方法:以“脊髓损伤,炎症,抗炎,中药单体,单体化合物,NF-κB信号通路,黄酮,糖苷,酚类,酯类,生物碱”为检索词在中国知网数据库中进行检索;以“Spinal cord injury,inflammation,anti-inflammatory,traditional Chinese medicine monomer,monomeric compound,NF-κB signaling pathway,flavonoids,glycosides,phenols,esters,alkaloids”为检索词在PubMed数据库中进行检索,最终共纳入67篇文献进行综述分析。结果与结论:①核转录因子κB信号通路在神经系统中的作用复杂多样,能够调控中性粒细胞、小胶质细胞、星形胶质细胞和巨噬细胞等,介导损伤后炎症的发生与发展;②中药单体如汉黄芩苷对核转录因子κB抑制蛋白的降解、红花黄素对核转录因子κB信号通路磷酸化过程的抑制、山奈酚对核转录因子κB信号通路p65核易位的抑制等作用可以降低炎症反应对机体造成的影响,从而促进神经功能恢复;③核转录因子κB信号通路在损伤早期能够促进炎症反应和免疫细胞迁移活化,在损伤中后期能够促进损伤部位的修复和纤维化的发生等,适当的激活核转录因子κB信号通路具有促进炎症因子的释放、提高细胞的抗氧化能力及促进免疫细胞的活化等能力,但过度激活的核转录因子κB信号通路则容易导致慢性炎症的发生和持续、细胞凋亡受到抑制等;④未来的研究可以进一步探索如何准确调控核转录因子κB信号通路的活化水平、如何实现对神经系统炎症和损伤的精准干预展开,也可围绕中药单体的制备及中药单体对信号通路的作用机制展开,以期为神经系统疾病的康复和功能恢复提供更有效的治疗策略。
基金Supported by the National Natural Science Foundation of China(No.81770889)Zhuhai Science and Technology Program(No.ZH22036201210134PWC).
文摘●AIM:To evaluate the role of semaphorin 7A(Sema7A)and its associated regulatory mechanisms in modulating the barrier function of cultured human corneal epithelial cells(HCEs).●METHODS:Barrier models of HCEs were treated with recombinant human Sema7A at concentrations of 0,125,250,or 500 ng/mL for 24,48,or 72h in vitro.Transepithelial electrical resistance(TEER)as well as Dextran-fluorescein isothiocyanate(FITC)permeability assays were conducted to assess barrier function.To quantify tight junctions(TJs)such as occludin and zonula occludens-1(ZO-1)at the mRNA level,reverse transcriptionpolymerase chain reaction(RT-PCR)analysis was performed.Immunoblotting was used to examine the activity of the nuclear factor-kappa B(NF-κB)signaling pathway and the production of TJs proteins.Immunofluorescence analyses were employed to localize the TJs.Enzyme-linked immunosorbent assay(ELISA)and RT-PCR were utilized to observe changes in interleukin(IL)-1βlevels.To investigate the role of NF-κB signaling activation and IL^(-1)βin Sema7A’s anti-barrier mechanism,we employed 0.1μmol/L IκB kinase 2(IKK2)inhibitor IV or 500 ng/mL IL^(-1)receptor(IL-1R)antagonist.●RESULTS:Treatment with Sema7A resulted in decreased TEER and increased permeability of Dextran-FITC in HCEs through down-regulating mRNA and protein levels of TJs in a time-and dose-dependent manner,as well as altering the localization of TJs.Furthermore,Sema7A stimulated the activation of inhibitor of kappa B alpha(IκBα)and expression of IL-1β.The anti-barrier function of Sema7A was significantly suppressed by treatment with IKK2 inhibitor IV or IL-1R antagonists.●CONCLUSION:Sema7A disrupts barrier function through its influence on NF-κB-mediated expression of TJ proteins,as well as the expression of IL-1β.These findings suggest that Sema7A could be a potential therapeutic target for the diseases in corneal epithelium.
基金2018 Henan Medical Science and Technology Research Plan Project,China,No.SBGJ2018019.
文摘BACKGROUND Osteoporosis is a common metabolic bone disorder induced by an imbalance between osteoclastic activity and osteogenic activity.During osteoporosis,bone mesenchymal stem cells(BMSCs)exhibit an increased ability to differentiate into adipocytes and a decreased ability to differentiate into osteoblasts,resulting in bone loss.Jumonji domain-containing 1C(JMJD1C)has been demonstrated to suppress osteoclastogenesis.AIM To examine the effect of JMJD1C on the osteogenesis of BMSCs and the potential underlying mechanism.METHODS BMSCs were isolated from mouse bone marrow tissues.Oil Red O staining,Alizarin red staining,alkaline phosphatase staining and the expression of adipo-genic and osteogenic-associated genes were assessed to determine the differen-tiation of BMSCs.Bone marrow-derived macrophages(BMMs)were incubated with receptor activator of nuclear factor-kappaΒligand to induce osteoclast differentiation,and osteoclast differen-tiation was confirmed by tartrate-resistant acid phosphatase staining.Other related genes were measured via reverse transcription coupled to the quantitative polymerase chain reaction and western blotting.Enzyme-linked immunosorbent assays were used to measure the levels of inflammatory cytokines,including tumor necrosis factor alpha,interleukin-6 and interleukin-1 beta.RESULTS The osteogenic and adipogenic differentiation potential of BMSCs isolated from mouse bone marrow samples was evaluated.JMJD1C mRNA and protein expression was upregulated in BMSCs after osteoblast induction,while p-nuclear factor-κB(NF-κB)and inflammatory cytokines were not significantly altered.Knockdown of JMJD1C repressed osteogenic differentiation and enhanced NF-κB activation and inflammatory cytokine release in BMSCs.Moreover,JMJD1C expression decreased during BMM osteoclast differentiation.CONCLUSION The JMJD1C/NF-κB signaling pathway is potentially involved in BMSC osteogenic differentiation and may play vital roles in the pathogenesis of osteoporosis.
文摘The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becoming a significant threat to human health. More and more studies have found that Toll-like receptor 4 (TLR4), as a member of the Toll-like receptor family, can promote the generation of inflammatory factors and is closely related to the body’s immune response and inflammatory response. Nuclear factor-κB p65 (NF-κB p65) is a nuclear transcription factor that can interact with various cytokines, growth factors, and apoptotic factors, participating in processes such as oxidative stress, apoptosis, and inflammation in the body [1]. This article elaborates on the structure, function, and signaling pathways of TLR4 and NF-κB p65 proteins in the pathogenesis of otitis media, aiming to provide more precise targets and better therapeutic efficacy for the diagnosis and treatment of otitis media. The role of inflammation in disease.
基金supported by the National Natural Science Foundation of China,Nos.82071387(to HT),81971172(to YW)the Natural Science Foundation of Zhejiang Province,China,No.LY22H090012(to HT)the Basic Research Project of Wenzhou City,China,No.Y20220923(to MZ)。
文摘The M1/M2 phenotypic shift of microglia after spinal cord injury plays an important role in the regulation of neuroinflammation during the secondary injury phase of spinal cord injury.Regulation of shifting microglia polarization from M1(neurotoxic and proinflammatory type)to M2(neuroprotective and anti-inflammatory type)after spinal cord injury appears to be crucial.Tryptanthrin possesses an anti-inflammatory biological function.However,its roles and the underlying molecular mechanisms in spinal cord injury remain unknown.In this study,we found that tryptanthrin inhibited microglia-derived inflammation by promoting polarization to the M2 phenotype in vitro.Tryptanthrin promoted M2 polarization through inactivating the cGAS/STING/NF-κB pathway.Additionally,we found that targeting the cGAS/STING/NF-κB pathway with tryptanthrin shifted microglia from the M1 to M2 phenotype after spinal cord injury,inhibited neuronal loss,and promoted tissue repair and functional recovery in a mouse model of spinal cord injury.Finally,using a conditional co-culture system,we found that microglia treated with tryptanthrin suppressed endoplasmic reticulum stress-related neuronal apoptosis.Taken together,these results suggest that by targeting the cGAS/STING/NF-κB axis,tryptanthrin attenuates microglia-derived neuroinflammation and promotes functional recovery after spinal cord injury through shifting microglia polarization to the M2 phenotype.
基金supported by grants from the National Key Research and Development Program of China,No.2017YFA0105400(to LR)the Key Research and Development Program of Guangdong Province,No.2019B020236002(to LR)the National Natural Science Foundation of China,Nos.81972111(to LZ),81772349(to BL).
文摘Microglia,the resident monocyte of the central nervous system,play a crucial role in the response to spinal cord injury.However,the precise mechanism remains unclear.To investigate the molecular mechanisms by which microglia regulate the neuroinflammatory response to spinal cord injury,we performed single-cell RNA sequencing dataset analysis,focusing on changes in microglial subpopulations.We found that the MG1 subpopulation emerged in the acute/subacute phase of spinal cord injury and expressed genes related to cell pyroptosis,sphingomyelin metabolism,and neuroinflammation at high levels.Subsequently,we established a mouse model of contusive injury and performed intrathecal injection of siRNA and molecular inhibitors to validate the role of ceramide synthase 5 in the neuroinflammatory responses and pyroptosis after spinal cord injury.Finally,we established a PC12-BV2 cell co-culture system and found that ceramide synthase 5 and pyroptosis-associated proteins were highly expressed to induce the apoptosis of neuron cells.Inhibiting ceramide synthase 5 expression in a mouse model of spinal cord injury effectively reduced pyroptosis.Furthermore,ceramide synthase 5-induced pyroptosis was dependent on activation of the NLRP3 signaling pathway.Inhibiting ceramide synthase 5 expression in microglia in vivo reduced neuronal apoptosis and promoted recovery of neurological function.Pla2g7 formed a“bridge”between sphingolipid metabolism and ceramide synthase 5-mediated cell death by inhibiting the NLRP3 signaling pathway.Collectively,these findings suggest that inhibiting ceramide synthase 5 expression in microglia after spinal cord injury effectively suppressed microglial pyroptosis mediated by NLRP3,thereby exerting neuroprotective effects.
基金supported by STI2030-Major Projects,No.2021ZD 0201801(to JG)Shanxi Province Basic Research Program,No.20210302123429(to QS).
文摘In patients with Alzheimer’s disease,gamma-glutamyl transferase 5(GGT5)expression has been observed to be downregulated in cerebrovascular endothelial cells.However,the functional role of GGT5 in the development of Alzheimer’s disease remains unclear.This study aimed to explore the effect of GGT5 on cognitive function and brain pathology in an APP/PS1 mouse model of Alzheimer’s disease,as well as the underlying mechanism.We observed a significant reduction in GGT5 expression in two in vitro models of Alzheimer’s disease(Aβ_(1-42)-treated hCMEC/D3 and bEnd.3 cells),as well as in the APP/PS1 mouse model.Additionally,injection of APP/PS1 mice with an adeno-associated virus encoding GGT5 enhanced hippocampal synaptic plasticity and mitigated cognitive deficits.Interestingly,increasing GGT5 expression in cerebrovascular endothelial cells reduced levels of both soluble and insoluble amyloid-βin the brains of APP/PS1 mice.This effect may be attributable to inhibition of the expression ofβ-site APP cleaving enzyme 1,which is mediated by nuclear factor-kappa B.Our findings demonstrate that GGT5 expression in cerebrovascular endothelial cells is inversely associated with Alzheimer’s disease pathogenesis,and that GGT5 upregulation mitigates cognitive deficits in APP/PS1 mice.These findings suggest that GGT5 expression in cerebrovascular endothelial cells is a potential therapeutic target and biomarker for Alzheimer’s disease.
文摘Concomitantly with the increase in the prevalences of overweight/obesity, nonalcoholic fatty liver disease(NAFLD) has worldwide become the main cause of chronic liver disease in both adults and children. Patients with fatty liver display features of metabolic syndrome(Met S), like insulin resistance(IR), glucose intolerance, hypertension and dyslipidemia. Recently, epidemiological studies have linked obesity, Met S, and NAFLD to decreased bone mineral density and osteoporosis, highlighting an intricate interplay among bone, adipose tissue, and liver. Osteoprotegerin(OPG), an important symbol of the receptor activator of nuclear factor-B ligand/receptor activator of nuclear factor kappa B/OPG system activation, typically considered for its role in bone metabolism, may also play critical roles in the initiation and perpetuation of obesityrelated comorbidities. Clinical data have indicated that OPG concentrations are associated with hypertension, left ventricular hypertrophy, vascular calcification, endothelial dysfunction, and severity of liver damage in chronic hepatitis C. Nonetheless, the relationship between circulating OPG and IR as a key feature of Met S as well as between OPG and NAFLD remains uncertain. Thus, the aims of the present review are to provide the existent knowledge on these associations and to discuss briefly the underlying mechanisms linking OPG and NAFLD.
基金supported by grants from the Project of Elitist Peak in Six Fields(No.2006-B-063)the Project of Medical Sciences(H200727),the Bureau of Health,Jiangsu Province,China
文摘BACKGROUND: The active form of nuclear factor-kappa B (NF-kappa B) is involved in the initiation, generation, and development of hepatocellular carcinoma (HCC), and is up-regulated in inflammation-associated malignancies. We investigated the dynamic expression of NF-kappa B and its influences on the occurrence of HCC through antiangiogenic (thalidomide) intervention in NF-kappa B activation. METHODS : Hepatoma models were induced with 2-fluorenylacetamide (2-FAA, 0.05%) in male Sprague-Dawley rats, and thalidomide (100 mg/kg body weight) was administered intragastrically to intervene in NF-kappa B activation. The pathological changes in the liver of sacrificed rats were assessed after hematoxylin and eosin staining. NF-kappa B mRNA was amplified by RT-nested PCR. The alterations of NF-kappa B and vascular endothelial growth factor (VEGF) expression were analyzed by enzyme-linked immunosorbent assay, immunohistochemistry, and Western blotting. RESULTS: Rat hepatocytes showed denatured, precancerous, and cancerous stages in hepatocarcinogenesis, with an increasing tendency of hepatic NF-kappa B, NF-kappa B mRNA, and VEGF expression, and their values in the HCC group were higher than those in controls (P<0.001). In the thalidomide-treated group, the morphologic changes generated only punctiform denaturation and necrosis at the early or middle stages, and nodular hyperplasia or a little atypical hyperplasia at the final stages, with the expression of NF-kappa B (chi(2)=9.93, P<0.001) and VEGF (chi(2)=8.024, P<0.001) lower than that in the 2-FAA group. CONCLUSION: NF-kappa B is overexpressed in hepatocarcinogenesis and antiangiogenic treatment down-regulates the expression of NF-kappa B and VEGF, and delays the occurrence of HCC. (Hepatobiliary Pancreat Dis Int 2010; 9: 169-174)
文摘BACKGROUND: Urinary trypsin inhibitor (UTI) inhibits the inflammatory response and protects against ischemia-reperfusion (I/R) injury. The inflammatory response is mediated by nuclear factor-kappa B (NF-kappa B) and its related target genes and products such as vascular endothelial cell adhesion molecule and CXC chemokines. We aimed to assess the roles of those mediators in a UTI-treated mouse model of hepatic I/R injury. METHODS: Treatment group 1 (UTI given 5 minutes prior to liver ischemia), treatment group 2 (UTI given 5 minutes after the anhepatic phase) and a control group were investigated. Blood and liver samples were obtained and compared at 1, 3, 6 and 24 hours after reperfusion. RESULTS: Attenuation of pathological hepatocellular damage was greater in the treatment groups than in the control group (P < 0.05). Compared with the control group, the UTI treatment groups showed significantly lower serum alanine aminotransferase and aspartate aminotransferase levels, decreased myeloperoxidase activity, and reduced NF-kappa B activation. Also downregulated was the expression of tumor necrosis factor-alpha, cytokine-induced neutrophil chemoattractant, and macrophage inflammatory protein-2 at the mRNA level. P-selectin protein and intercellular adhesion molecule-1 protein expression were also downregulated. In addition, the treatment group I showed a better protective effect against I/R injury than the treatment group 2. CONCLUSIONS: UTI reduces NF-kappa B activation and downregulates the expression of its related mediators, followed by the inhibition of neutrophil aggregation and infiltration in hepatic I/R injury. The protective role of UTI is more effective in prevention than in treatment.
文摘Approximately 350 million people are estimated to be persistently infected with hepatitis B virus(HBV) worldwide. HBV maintains persistent infection by employing covalently closed circular DNA(ccc DNA), a template for all HBV RNAs. Chronic hepatitis B(CHB) patients are currently treated with nucleos(t)ide analogs such as lamivudine, adefovir, entecavir, and tenofovir. However, these treatments rarely cure CHB because they are unable to inhibit ccc DNA transcription and inhibit only a late stage in the HBV life cycle(the reverse transcription step in the nucleocapsid). Therefore, an understanding of the factors regulating ccc DNA transcription is required to stop this process. Among numerous factors, hepatocyte nuclear factors(HNFs) play the most important roles in ccc DNA transcription, especially in the generation of viral genomic RNA, a template for HBV replication. Therefore, proper control of HNF function could lead to the inhibition of HBV replication. In this review, we summarize and discuss the current understanding of the roles of HNFs in the HBV life cycle and the upstream factors that regulate HNFs. This knowledge will enable the identification of new therapeutic targets to cure CHB.
基金supported by grants from the Project of Elitist Peak in Six Fields(No.2006-B-063)the Projectof Medical Sciences(H200727),the Bureau of Health,Jiangsu Province,China
文摘BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. We analyzed the expression of miclear-transcription factor-kappa B (NF-kappa B) during hepatocarcinogenesis in order to evaluate its dynamic expression and its clinical value in the development and diagnosis of HCC. METHODS: Hepatoma models were induced by oral administration of 2-acetamidoflurene (2-FAA) to male Sprague-Dawley rats. Morphological changes were observed after hematoxylin and eosin staining. The cellular distribution of NF-kappa B expression during different stages of cancer development was investigated by immunohistochemistry, and the level of NF-kappa B expression in liver tissues was quantitatively analyzed by ELISA. The gene fragments of hepatic NF-kappa B were amplified by nested-polymerase chain reaction assay. RESULTS: Hepatocytes showed vacuole-like degeneration during the early stages, then had a hyperplastic nodal appearance during the middle stages, and finally progressed to tubercles of cancerous nests with high differentiation. The NF-kappa B-positive material was buff-colored, fine particles localized in the nucleus, and the incidence of NF-kappa B-positive cells was 81.8% in degeneration, 83.3% in precancerous lesions, and 100% in cancerous tissues. All of these values were higher than those in controls (P<0.01). Hepatic NF-kappa B expression and hepatic NF-kappa B-mRNA were also higher during the course of HCC development (P<0.01). CONCLUSION: The NF-kappa B signal transduction pathway is activated during the early stages of HCC development, and its abnormal expression may be associated with the occurrence of HCC.