AIM:To study the effects of Helicobacter pylori(H. pylori)tumor necrosis factor-α(TNF)inducing protein (Tip-α)on cytokine expression and its mechanism. METHODS:We cloned Tip-αfrom the H.pylori strain 26695,transfor...AIM:To study the effects of Helicobacter pylori(H. pylori)tumor necrosis factor-α(TNF)inducing protein (Tip-α)on cytokine expression and its mechanism. METHODS:We cloned Tip-αfrom the H.pylori strain 26695,transformed Escherichia coli with an expression plasmid,and then confirmed the expression product by Western blotting.Using different concentrations of Tip-αthat affected SGC7901 and GES-1 cells at different times,we assessed cytokine levels using enzyme-linked immunosorbent assay.We blocked SGC7901 cells with pyrrolidine dithiocarbamate(PDTC),a specific inhibitor of nuclear factorκB(NF-κB).We then detected interleukin(IL)-1βand TNF-αlevels in SGC7901 cells. RESULTS:Western blot analysis using an anti-Tip-α antibody revealed a 23-kDa protein,which indicated that recombinant Tip-αprotein was recombined successfully.The levels of IL-1β,IL-8 and TNF-αwere sig-nificantly higher following Tip-αinterference,whether GES-1 cells or SGC-7901 cells were used(P<0.05).However,the levels of cytokines(including IL-1β,IL-8 and TNF-α)secreted by SGC-7901 cells were greater than those secreted by GES-1 cells following treatment with Tip-αat the same concentration and for the same duration(P<0.05).After blocking NF-κB with PDTC, the cells(GES-1 cells and SGC-7901 cells)underwent interference with Tip-α.We found that IL-1βand TNF-αlevels were significantly decreased compared to cells that only underwent Tip-αinterference(P<0.05). CONCLUSION:Tip-αplays an important role in cyto-kine expression through NF-κB.展开更多
AIM: To investigate the role of nuclear factor κB(NF-κB) in the regulation of Epstein-Barr virus(EBV) latent membrane protein 1(LMP1) in EBV transformed cells. METHODS: LMP1 expression was examined in EBV transforme...AIM: To investigate the role of nuclear factor κB(NF-κB) in the regulation of Epstein-Barr virus(EBV) latent membrane protein 1(LMP1) in EBV transformed cells. METHODS: LMP1 expression was examined in EBV transformed human B lymphocytes with modulation of NF-κB activity. RESULTS: EBV infection is associated with several human cancers. EBV LMP1 is required for efficient transformation of adult primary B cells in vitro, and is expressed in several pathogenic stages of EBVassociated cancers. Regulation of EBV LMP1 involves both viral and cellular factors. LMP1 activates NF-κB signaling pathway that is a part of the EBV transformation program. However, the relation between NF-κB and LMP1 expression is not well established yet. In this report, we found that blocking the NF-κB activity by Inhibitor of κB stimulated LMP1 expression, while the overexpression of NF-κB repressed LMP1 expression in EBV-transformed IB4 cells. In addition, LMP1 repressed its own promoter activities in reporter assays, and the repression was associated with the activation of NF-κB. Moreover, NF-κB alone is sufficient to repress LMP1 promoter activities. CONCLUSION: Our data suggest LMP1 may repress its own expression through NF-κB in EBV transformed cells and shed a light on LMP1 regulation during EBV transformation.展开更多
The relation between the expression and activity of MMP-9 in C-reactive protein (CRP)-induced human THP-1 mononuclear cells and the activation of nuclear factor kappa-B (NF-κB) was studied to investigate the poss...The relation between the expression and activity of MMP-9 in C-reactive protein (CRP)-induced human THP-1 mononuclear cells and the activation of nuclear factor kappa-B (NF-κB) was studied to investigate the possible role of CRP in plaque destabilization. Human THP-1 cells were incubated in the presence of CRP at 0 (control group), 25, 50 and 100 μg/mL (CRP groups) for 24 h. In PDTC (a specific NF-κB inhibitor) group, the cells were pre-treated with PDTC at 10 μmol/L and then with 100 μg/mL CRP. The conditioned media (CM) and human THP-1 cells in different groups were harvested. MMP-9 expression in CM and human THP-1 cells was measured by ELISA and Western blotting. MMP-9 activity was assessed by fluorogenic substrates. The expression of NF-κB inhibitor α (IκB-α) and NF-κB p65 was detected by Western blotting and ELISA respectively. The results showed that CRP increased the expression and activity of MMP-9 in a dose-dependent manner in the human THP-1 cells. Western blotting revealed that IiB-α expression was decreased in the cells with the concentrations of CRP and ELISA demonstrated that NF-κB p65 expression in the CRP-induced cells was increased. After pre-treatment of the cells with PDTC at 10 μmol/L, the decrease in IκB-α expression and the increase in NF-κB p65 expression in the CRP-induced cells were inhibited, and the expression and activity of MMP-9 were lowered too. It is concluded that increased expression and activity of MMP-9 in CRP-induced human THP-1 cells may be associated with activation of NF-κB. Down-regulation of the expression and activity of MMP-9 may be a new treatment alternative for plaque stabilization by inhibiting the NF-κB activation.展开更多
BACKGROUND Colony-stimulating factor 3(CSF3)and its receptor(CSF3R)are known to promote gastric cancer(GC)growth and metastasis.However,their effects on the immune microenvironment remain unclear.Our analysis indicate...BACKGROUND Colony-stimulating factor 3(CSF3)and its receptor(CSF3R)are known to promote gastric cancer(GC)growth and metastasis.However,their effects on the immune microenvironment remain unclear.Our analysis indicated a potential link between CSF3R expression and the immunosuppressive receptor leukocyte immunoglobulin-like receptor B2(LILRB2)in GC.We hypothesized that CSF3/CSF3R may regulate LILRB2 and its ligands,angiopoietin-like protein 2(ANGPTL2)and human leukocyte antigen-G(HLA-G),contributing to immunosuppression.AIM To investigate the relationship between CSF3/CSF3R and LILRB2,as well as its ligands ANGPTL2 and HLA-G,in GC.METHODS Transcriptome sequencing data from The Cancer Genome Atlas were analyzed,stratifying patients by CSF3R expression.Differentially expressed genes and immune checkpoints were evaluated.Immunohistochemistry(IHC)was performed on GC tissues.Correlation analyses of CSF3R,LILRB2,ANGPTL2,and HLA-G were conducted using The Cancer Genome Atlas data and IHC results.GC cells were treated with CSF3,and expression levels of LILRB2,ANGPTL2,and HLA-G were measured by quantitative reverse transcriptase-polymerase chain reaction and western blotting.RESULTS Among 122 upregulated genes in high CSF3R expression groups,LILRB2 showed the most significant increase.IHC results indicated high expression of LILRB2(63.0%),ANGPTL2(56.5%),and HLA-G(73.9%)in GC tissues.Strong positive correlations existed between CSF3R and LILRB2,ANGPTL2,and HLA-G mRNA levels(P<0.001).IHC confirmed positive correlations between CSF3R and LILRB2(P<0.001),and HLA-G(P=0.010),but not ANGPTL2(P>0.05).CSF3 increased LILRB2,ANGPTL2,and HLA-G expression in GC cells.Heterogeneous nuclear ribonucleoprotein H1 modulation significantly altered their expression,impacting CSF3’s regulatory effects.CONCLUSION The CSF3/CSF3R pathway may contribute to immunosuppression in GC by upregulating LILRB2 and its ligands,with heterogeneous nuclear ribonucleoprotein H1 playing a regulatory role.展开更多
AIM: To characterize high-mobility group protein 1-toll-like receptor 4(HMGB1-TLR4) and downstream signaling pathways in intestinal ischemia/reperfusion(I/R) injury.METHODS: Forty specific-pathogen-free male C57BL/6 m...AIM: To characterize high-mobility group protein 1-toll-like receptor 4(HMGB1-TLR4) and downstream signaling pathways in intestinal ischemia/reperfusion(I/R) injury.METHODS: Forty specific-pathogen-free male C57BL/6 mice were randomly divided into five groups(n = 8 per group): sham, control, anti-HMGB1, anti-myeloid differentiation gene 88(My D88), and anti-translocatingchain-associating membrane protein(TRIF) antibody groups. Vehicle with the control Ig G antibody, antiHMGB1, anti-My D88, or anti-TRIF antibodies(all 1 mg/kg, 0.025%) were injected via the caudal vein 30 min prior to ischemia. After anesthetization, the abdominal wall was opened and the superior mesenteric artery was exposed, followed by 60 min mesenteric ischemia and then 60 min reperfusion. For the sham group, the abdominal wall was opened for 120 min without I/R. Levels of serum nuclear factor(NF)-κB p65, interleukin(IL)-6, and tumor necrosis factor(TNF)-α were measured, along with myeloperoxidase activity in the lung and liver. Inaddition,morphologic changes that occurred in the lung and intestinal tissues were evaluated. Levels of m RNA transcripts encoding HMGB1 and NF-κB were measured by real-time quantitative PCR, and levels of HMGB1 and NF-κB protein were measured by Western blot. Results were analyzed using one-way analysis of variance.RESULTS: Blocking HMGB 1, MyD 8 8, and TRIF expression by injecting anti-HMGB1, anti-My D88, or anti-TRIF antibodies prior to ischemia reduced the levels of inflammatory cytokines in serum; NF-κB p65: 104.64 ± 11.89, 228.53 ± 24.85, 145.00 ± 33.63, 191.12 ± 13.22, and 183.73 ± 10.81(P < 0.05); IL-6: 50.02 ± 6.33, 104.91 ± 31.18, 62.28 ± 6.73, 85.90 ± 17.37, and 78.14 ± 7.38(P < 0.05); TNF-α, 43.79 ± 4.18, 70.81 ± 6.97, 52.76 ± 5.71, 63.19 ± 5.47, and 59.70 ± 4.63(P < 0.05) for the sham, control, anti-HMGB1, anti-My D88, and anti-TRIF groups, respectively(all in pg/m L).Antibodies also alleviated tissue injury in the lung and small intestine compared with the control group in the mouse intestinal I/R model. The administration of antiHMGB1, anti-My D88, and anti-TRIF antibodies markedly reduced damage caused by I/R, for which anti-HMGB1 antibody had the most obvious effect.CONCLUSION: HMGB1 and its downstream signaling pathway play important roles in the mouse intestinal I/R injury, and the effect of the TRIF-dependent pathway is slightly greater.展开更多
AIM: To investigate the role of protein kinase C(PKC)-δ activation in the pathogenesis of acute liver failure(ALF) in a well-characterized mouse model of D-galactosamine(D-Gal N)/lipopolysaccharide(LPS)-induced ALF.M...AIM: To investigate the role of protein kinase C(PKC)-δ activation in the pathogenesis of acute liver failure(ALF) in a well-characterized mouse model of D-galactosamine(D-Gal N)/lipopolysaccharide(LPS)-induced ALF.METHODS: BALB/c mice were randomly assigned to five groups, and ALF was induced in mice by intraperitoneal injection of D-Ga IN(600 mg/kg) and LPS(10 μg/kg). Kaplan-Meier method was used for survival analysis. Serum alanine aminotransferase(ALT) and aspartate aminotransferase(AST) levels at different time points within one week were determined using a multiparameteric analyzer. Serum levels of high-mobility group box 1(HMGB1), tumor necrosis factor(TNF)-α, interleukin(IL)-1β, IL-6, and IL-10 as well as nuclear factor(NF)-κB activity were determined by enzyme-linked immunosorbent assay. Hepatic morphological changes at 36 h after ALF induction were assessed by hematoxylin and eosin staining. Expression of PKC-δ in liver tissue and peripheral blood mononuclear cells(PBMCs) was analyzed by Western blot.RESULTS: The expression and activation of PKC-δ were up-regulated in liver tissue and PBMCs of mice with D-Gal N/LPS-induced ALF. Inhibition of PKC-δ activation with rottlerin significantly increased the survival rates and decreased serum ALT/AST levels at 6, 12 and 24 h compared with the control group(P < 0.001). Rottlerin treatment also significantly decreased serum levels of HMGB1 at 6, 12, and 24 h, TNF-α, IL-6 and IL-1 β at 12 h compared with the control group(P < 0.01). The inflammatory cell infiltration and necrosis in liver tissue were also decreased in the rottlerin treatment group. Furthermore, sphingosine kinase 1(Sph K1) dependent PKC-δ activation played an important role in promoting NF-κB activation and inflammatory cytokine production in ALF.CONCLUSION: Sph K1 dependent PKC-δ activation plays an important role in promoting NF-κB activation and inflammatory response in ALF, and inhibition of PKC-δ activation might be a potential therapeutic strategy for this disease.展开更多
Opioids,such as morphine,are the most potent drugs used to treat pain.Long-term use results in high tolerance to morphine.High mobility group box-1(HMGB1) has been shown to participate in neuropathic or inflammatory p...Opioids,such as morphine,are the most potent drugs used to treat pain.Long-term use results in high tolerance to morphine.High mobility group box-1(HMGB1) has been shown to participate in neuropathic or inflammatory pain,but its role in morphine tolerance is unclear.In this study,we established rat and mouse models of morphine tolerance by intrathecal injection of morphine for 7 consecutive days.We found that morphine induced rat spinal cord neurons to release a large amount of HMGB1.HMGB1 regulated nuclear factor κB p65 phosphorylation and interleukin-1β production by increasing Toll-like receptor 4receptor expression in microglia,thereby inducing morphine tolerance.Glycyrrhizin,an HMGB1 inhibito r,markedly attenuated chronic morphine tole rance in the mouse model.Finally,compound C(adenosine 5’-monophosphate-activated protein kinase inhibitor) and zinc protoporphyrin(heme oxygenase-1 inhibitor)alleviated the morphine-induced release of HMGB1 and reduced nuclear factor κB p65 phosphorylation and interleukin-1β production in a mouse model of morphine tolerance and an SH-SY5Y cell model of morphine tole rance,and alleviated morphine tolerance in the mouse model.These findings suggest that morphine induces HMGB1 release via the adenosine 5’-monophosphate-activated protein kinase/heme oxygenase-1 signaling pathway,and that inhibiting this signaling pathway can effectively reduce morphine tole rance.展开更多
<strong>Aims: </strong>To evaluate the association of Nuclear factor kappa B1(NFkB1) gene polymorphism with inflammatory markers Urinary Monocyte Chemoattractant Protein 1 (UMCP1) and Tumor Necrosis Factor...<strong>Aims: </strong>To evaluate the association of Nuclear factor kappa B1(NFkB1) gene polymorphism with inflammatory markers Urinary Monocyte Chemoattractant Protein 1 (UMCP1) and Tumor Necrosis Factor alfa (TNF alfa) in Patients of diabetes mellitus with or without renal involvement in Eastern India. <strong>Material and Methods: </strong>Consecutive Patients of Type 2 Diabetes Mellitus (DM) with or without microalbuminuria attending SCB MEDICAL COLLEGE and HOSPITAL Medical OPDs in between September 2018 to September 2019 were recruited in this study. Patients were subjected to blood and urine investigations. DNA extraction and Restriction fragment Length Polymorphism (RFLP) was done in Department of Biochemistry. Controls were unrelated healthy attendants with no history of Diabetes Mellitus, HTN, Chronic Kidney Disease (CKD). <strong>Results:</strong> Mean Systolic BP, Fasting Blood Glucose, Post Prandial Blood Glucose, HBA1c, Total Cholesterol were significantly higher in diabetes mellitus and diabetic nephropathy groups than control group. Estimated Glomerular Filtration Rate was significantly lower in diabetic nephropathy (p value < 0.001). UMCP1, Urinary Albumin Creatinine Ratio, TNF alfa were higher in diabetes mellitus and nephropathy with p value (<0.001, 0.006 < 0.001) respectively. In between DM and Diabetic Nephropathy groups nfkb1 gene expression, umcp1 and tnf alfa levels were significantly increased in Diabetic nephropathy with p value 0.019, <0.01, 0.001 respectively. Insertion/insertion NFkB1 gene polymorphisms were more in diabetic nephropathy group and were positively correlated with inflammatory markers UMCP1 (r = 0.517, p < 0.01) and TNF alfa (r = 0.172, p = 0.19). <strong>Conclusion:</strong> insertion/insertion NFkB1 gene polymorphism increases the risk of nephropathy by 2.52 times (OR = 2.52, 95% CI: 0.04 - 0.63, p value = 0.019) in diabetes patients in eastern India.展开更多
文摘AIM:To study the effects of Helicobacter pylori(H. pylori)tumor necrosis factor-α(TNF)inducing protein (Tip-α)on cytokine expression and its mechanism. METHODS:We cloned Tip-αfrom the H.pylori strain 26695,transformed Escherichia coli with an expression plasmid,and then confirmed the expression product by Western blotting.Using different concentrations of Tip-αthat affected SGC7901 and GES-1 cells at different times,we assessed cytokine levels using enzyme-linked immunosorbent assay.We blocked SGC7901 cells with pyrrolidine dithiocarbamate(PDTC),a specific inhibitor of nuclear factorκB(NF-κB).We then detected interleukin(IL)-1βand TNF-αlevels in SGC7901 cells. RESULTS:Western blot analysis using an anti-Tip-α antibody revealed a 23-kDa protein,which indicated that recombinant Tip-αprotein was recombined successfully.The levels of IL-1β,IL-8 and TNF-αwere sig-nificantly higher following Tip-αinterference,whether GES-1 cells or SGC-7901 cells were used(P<0.05).However,the levels of cytokines(including IL-1β,IL-8 and TNF-α)secreted by SGC-7901 cells were greater than those secreted by GES-1 cells following treatment with Tip-αat the same concentration and for the same duration(P<0.05).After blocking NF-κB with PDTC, the cells(GES-1 cells and SGC-7901 cells)underwent interference with Tip-α.We found that IL-1βand TNF-αlevels were significantly decreased compared to cells that only underwent Tip-αinterference(P<0.05). CONCLUSION:Tip-αplays an important role in cyto-kine expression through NF-κB.
基金Supported by Grants from the NIH CA138213,RR15635Department of Defense W81XWH-12-1-0225(Luwen Zhang)Qianli Wang was partially supported by Undergraduate Creative Activities and Research Experiences and Beckman Scholars Program
文摘AIM: To investigate the role of nuclear factor κB(NF-κB) in the regulation of Epstein-Barr virus(EBV) latent membrane protein 1(LMP1) in EBV transformed cells. METHODS: LMP1 expression was examined in EBV transformed human B lymphocytes with modulation of NF-κB activity. RESULTS: EBV infection is associated with several human cancers. EBV LMP1 is required for efficient transformation of adult primary B cells in vitro, and is expressed in several pathogenic stages of EBVassociated cancers. Regulation of EBV LMP1 involves both viral and cellular factors. LMP1 activates NF-κB signaling pathway that is a part of the EBV transformation program. However, the relation between NF-κB and LMP1 expression is not well established yet. In this report, we found that blocking the NF-κB activity by Inhibitor of κB stimulated LMP1 expression, while the overexpression of NF-κB repressed LMP1 expression in EBV-transformed IB4 cells. In addition, LMP1 repressed its own promoter activities in reporter assays, and the repression was associated with the activation of NF-κB. Moreover, NF-κB alone is sufficient to repress LMP1 promoter activities. CONCLUSION: Our data suggest LMP1 may repress its own expression through NF-κB in EBV transformed cells and shed a light on LMP1 regulation during EBV transformation.
文摘The relation between the expression and activity of MMP-9 in C-reactive protein (CRP)-induced human THP-1 mononuclear cells and the activation of nuclear factor kappa-B (NF-κB) was studied to investigate the possible role of CRP in plaque destabilization. Human THP-1 cells were incubated in the presence of CRP at 0 (control group), 25, 50 and 100 μg/mL (CRP groups) for 24 h. In PDTC (a specific NF-κB inhibitor) group, the cells were pre-treated with PDTC at 10 μmol/L and then with 100 μg/mL CRP. The conditioned media (CM) and human THP-1 cells in different groups were harvested. MMP-9 expression in CM and human THP-1 cells was measured by ELISA and Western blotting. MMP-9 activity was assessed by fluorogenic substrates. The expression of NF-κB inhibitor α (IκB-α) and NF-κB p65 was detected by Western blotting and ELISA respectively. The results showed that CRP increased the expression and activity of MMP-9 in a dose-dependent manner in the human THP-1 cells. Western blotting revealed that IiB-α expression was decreased in the cells with the concentrations of CRP and ELISA demonstrated that NF-κB p65 expression in the CRP-induced cells was increased. After pre-treatment of the cells with PDTC at 10 μmol/L, the decrease in IκB-α expression and the increase in NF-κB p65 expression in the CRP-induced cells were inhibited, and the expression and activity of MMP-9 were lowered too. It is concluded that increased expression and activity of MMP-9 in CRP-induced human THP-1 cells may be associated with activation of NF-κB. Down-regulation of the expression and activity of MMP-9 may be a new treatment alternative for plaque stabilization by inhibiting the NF-κB activation.
基金Supported by Hebei Province Medical Science Research Project Plan,No.20230755.
文摘BACKGROUND Colony-stimulating factor 3(CSF3)and its receptor(CSF3R)are known to promote gastric cancer(GC)growth and metastasis.However,their effects on the immune microenvironment remain unclear.Our analysis indicated a potential link between CSF3R expression and the immunosuppressive receptor leukocyte immunoglobulin-like receptor B2(LILRB2)in GC.We hypothesized that CSF3/CSF3R may regulate LILRB2 and its ligands,angiopoietin-like protein 2(ANGPTL2)and human leukocyte antigen-G(HLA-G),contributing to immunosuppression.AIM To investigate the relationship between CSF3/CSF3R and LILRB2,as well as its ligands ANGPTL2 and HLA-G,in GC.METHODS Transcriptome sequencing data from The Cancer Genome Atlas were analyzed,stratifying patients by CSF3R expression.Differentially expressed genes and immune checkpoints were evaluated.Immunohistochemistry(IHC)was performed on GC tissues.Correlation analyses of CSF3R,LILRB2,ANGPTL2,and HLA-G were conducted using The Cancer Genome Atlas data and IHC results.GC cells were treated with CSF3,and expression levels of LILRB2,ANGPTL2,and HLA-G were measured by quantitative reverse transcriptase-polymerase chain reaction and western blotting.RESULTS Among 122 upregulated genes in high CSF3R expression groups,LILRB2 showed the most significant increase.IHC results indicated high expression of LILRB2(63.0%),ANGPTL2(56.5%),and HLA-G(73.9%)in GC tissues.Strong positive correlations existed between CSF3R and LILRB2,ANGPTL2,and HLA-G mRNA levels(P<0.001).IHC confirmed positive correlations between CSF3R and LILRB2(P<0.001),and HLA-G(P=0.010),but not ANGPTL2(P>0.05).CSF3 increased LILRB2,ANGPTL2,and HLA-G expression in GC cells.Heterogeneous nuclear ribonucleoprotein H1 modulation significantly altered their expression,impacting CSF3’s regulatory effects.CONCLUSION The CSF3/CSF3R pathway may contribute to immunosuppression in GC by upregulating LILRB2 and its ligands,with heterogeneous nuclear ribonucleoprotein H1 playing a regulatory role.
基金Supported by National Natural Science Foundation of China,No.30940069the Natural Sciences Foundation of Beijing,No.7102127
文摘AIM: To characterize high-mobility group protein 1-toll-like receptor 4(HMGB1-TLR4) and downstream signaling pathways in intestinal ischemia/reperfusion(I/R) injury.METHODS: Forty specific-pathogen-free male C57BL/6 mice were randomly divided into five groups(n = 8 per group): sham, control, anti-HMGB1, anti-myeloid differentiation gene 88(My D88), and anti-translocatingchain-associating membrane protein(TRIF) antibody groups. Vehicle with the control Ig G antibody, antiHMGB1, anti-My D88, or anti-TRIF antibodies(all 1 mg/kg, 0.025%) were injected via the caudal vein 30 min prior to ischemia. After anesthetization, the abdominal wall was opened and the superior mesenteric artery was exposed, followed by 60 min mesenteric ischemia and then 60 min reperfusion. For the sham group, the abdominal wall was opened for 120 min without I/R. Levels of serum nuclear factor(NF)-κB p65, interleukin(IL)-6, and tumor necrosis factor(TNF)-α were measured, along with myeloperoxidase activity in the lung and liver. Inaddition,morphologic changes that occurred in the lung and intestinal tissues were evaluated. Levels of m RNA transcripts encoding HMGB1 and NF-κB were measured by real-time quantitative PCR, and levels of HMGB1 and NF-κB protein were measured by Western blot. Results were analyzed using one-way analysis of variance.RESULTS: Blocking HMGB 1, MyD 8 8, and TRIF expression by injecting anti-HMGB1, anti-My D88, or anti-TRIF antibodies prior to ischemia reduced the levels of inflammatory cytokines in serum; NF-κB p65: 104.64 ± 11.89, 228.53 ± 24.85, 145.00 ± 33.63, 191.12 ± 13.22, and 183.73 ± 10.81(P < 0.05); IL-6: 50.02 ± 6.33, 104.91 ± 31.18, 62.28 ± 6.73, 85.90 ± 17.37, and 78.14 ± 7.38(P < 0.05); TNF-α, 43.79 ± 4.18, 70.81 ± 6.97, 52.76 ± 5.71, 63.19 ± 5.47, and 59.70 ± 4.63(P < 0.05) for the sham, control, anti-HMGB1, anti-My D88, and anti-TRIF groups, respectively(all in pg/m L).Antibodies also alleviated tissue injury in the lung and small intestine compared with the control group in the mouse intestinal I/R model. The administration of antiHMGB1, anti-My D88, and anti-TRIF antibodies markedly reduced damage caused by I/R, for which anti-HMGB1 antibody had the most obvious effect.CONCLUSION: HMGB1 and its downstream signaling pathway play important roles in the mouse intestinal I/R injury, and the effect of the TRIF-dependent pathway is slightly greater.
基金Supported by The National Natural Science Foundation of ChinaNo.81160065
文摘AIM: To investigate the role of protein kinase C(PKC)-δ activation in the pathogenesis of acute liver failure(ALF) in a well-characterized mouse model of D-galactosamine(D-Gal N)/lipopolysaccharide(LPS)-induced ALF.METHODS: BALB/c mice were randomly assigned to five groups, and ALF was induced in mice by intraperitoneal injection of D-Ga IN(600 mg/kg) and LPS(10 μg/kg). Kaplan-Meier method was used for survival analysis. Serum alanine aminotransferase(ALT) and aspartate aminotransferase(AST) levels at different time points within one week were determined using a multiparameteric analyzer. Serum levels of high-mobility group box 1(HMGB1), tumor necrosis factor(TNF)-α, interleukin(IL)-1β, IL-6, and IL-10 as well as nuclear factor(NF)-κB activity were determined by enzyme-linked immunosorbent assay. Hepatic morphological changes at 36 h after ALF induction were assessed by hematoxylin and eosin staining. Expression of PKC-δ in liver tissue and peripheral blood mononuclear cells(PBMCs) was analyzed by Western blot.RESULTS: The expression and activation of PKC-δ were up-regulated in liver tissue and PBMCs of mice with D-Gal N/LPS-induced ALF. Inhibition of PKC-δ activation with rottlerin significantly increased the survival rates and decreased serum ALT/AST levels at 6, 12 and 24 h compared with the control group(P < 0.001). Rottlerin treatment also significantly decreased serum levels of HMGB1 at 6, 12, and 24 h, TNF-α, IL-6 and IL-1 β at 12 h compared with the control group(P < 0.01). The inflammatory cell infiltration and necrosis in liver tissue were also decreased in the rottlerin treatment group. Furthermore, sphingosine kinase 1(Sph K1) dependent PKC-δ activation played an important role in promoting NF-κB activation and inflammatory cytokine production in ALF.CONCLUSION: Sph K1 dependent PKC-δ activation plays an important role in promoting NF-κB activation and inflammatory response in ALF, and inhibition of PKC-δ activation might be a potential therapeutic strategy for this disease.
基金supported by the National Natural Science Foundation of ChinaNos.81971047 (to WTL) and 82073910 (to XFW)+2 种基金the Natural Science Foundation of Jiangsu Province,No.BK20191253 (to XFW)Key R&D Program (Social Development) Project of Jiangsu Province,No.BE2019 732 (to WTL)Jiangsu Province Hospital (the First Affiliated Hospital of Nanjing Medical University) Clinical Capacity Enhancement Project,No.JSPH-511B2018-8 (to YBP)。
文摘Opioids,such as morphine,are the most potent drugs used to treat pain.Long-term use results in high tolerance to morphine.High mobility group box-1(HMGB1) has been shown to participate in neuropathic or inflammatory pain,but its role in morphine tolerance is unclear.In this study,we established rat and mouse models of morphine tolerance by intrathecal injection of morphine for 7 consecutive days.We found that morphine induced rat spinal cord neurons to release a large amount of HMGB1.HMGB1 regulated nuclear factor κB p65 phosphorylation and interleukin-1β production by increasing Toll-like receptor 4receptor expression in microglia,thereby inducing morphine tolerance.Glycyrrhizin,an HMGB1 inhibito r,markedly attenuated chronic morphine tole rance in the mouse model.Finally,compound C(adenosine 5’-monophosphate-activated protein kinase inhibitor) and zinc protoporphyrin(heme oxygenase-1 inhibitor)alleviated the morphine-induced release of HMGB1 and reduced nuclear factor κB p65 phosphorylation and interleukin-1β production in a mouse model of morphine tolerance and an SH-SY5Y cell model of morphine tole rance,and alleviated morphine tolerance in the mouse model.These findings suggest that morphine induces HMGB1 release via the adenosine 5’-monophosphate-activated protein kinase/heme oxygenase-1 signaling pathway,and that inhibiting this signaling pathway can effectively reduce morphine tole rance.
文摘<strong>Aims: </strong>To evaluate the association of Nuclear factor kappa B1(NFkB1) gene polymorphism with inflammatory markers Urinary Monocyte Chemoattractant Protein 1 (UMCP1) and Tumor Necrosis Factor alfa (TNF alfa) in Patients of diabetes mellitus with or without renal involvement in Eastern India. <strong>Material and Methods: </strong>Consecutive Patients of Type 2 Diabetes Mellitus (DM) with or without microalbuminuria attending SCB MEDICAL COLLEGE and HOSPITAL Medical OPDs in between September 2018 to September 2019 were recruited in this study. Patients were subjected to blood and urine investigations. DNA extraction and Restriction fragment Length Polymorphism (RFLP) was done in Department of Biochemistry. Controls were unrelated healthy attendants with no history of Diabetes Mellitus, HTN, Chronic Kidney Disease (CKD). <strong>Results:</strong> Mean Systolic BP, Fasting Blood Glucose, Post Prandial Blood Glucose, HBA1c, Total Cholesterol were significantly higher in diabetes mellitus and diabetic nephropathy groups than control group. Estimated Glomerular Filtration Rate was significantly lower in diabetic nephropathy (p value < 0.001). UMCP1, Urinary Albumin Creatinine Ratio, TNF alfa were higher in diabetes mellitus and nephropathy with p value (<0.001, 0.006 < 0.001) respectively. In between DM and Diabetic Nephropathy groups nfkb1 gene expression, umcp1 and tnf alfa levels were significantly increased in Diabetic nephropathy with p value 0.019, <0.01, 0.001 respectively. Insertion/insertion NFkB1 gene polymorphisms were more in diabetic nephropathy group and were positively correlated with inflammatory markers UMCP1 (r = 0.517, p < 0.01) and TNF alfa (r = 0.172, p = 0.19). <strong>Conclusion:</strong> insertion/insertion NFkB1 gene polymorphism increases the risk of nephropathy by 2.52 times (OR = 2.52, 95% CI: 0.04 - 0.63, p value = 0.019) in diabetes patients in eastern India.