It is difficult to accurately obtain the permeability of complex lithologic reservoirs using conventional methods because they have diverse pore structures and complex seepage mechanisms.Based on in-depth analysis of ...It is difficult to accurately obtain the permeability of complex lithologic reservoirs using conventional methods because they have diverse pore structures and complex seepage mechanisms.Based on in-depth analysis of the limitation of classical nuclear magnetic resonance(NMR)permeability calculation models,and the understanding that the pore structure and porosity are the main controlling factors of permeability,this study provides a new permeability calculation method involving classifying pore sizes by using NMR T_2 spectrum first and then calculating permeability of different sizes of pores.Based on this idea,taking the bioclastic limestone reservoir in the A oilfield of Mid-East as an example,the classification criterion of four kinds of pore sizes:coarse,medium,fine and micro throat,was established and transformed into NMR T_2 standard based on shapes and turning points of mercury intrusion capillary pressure curves.Then the proportions of the four kinds of pore sizes were obtained precisely based on the NMR logging data.A new NMR permeability calculation model of multicomponent pores combinations was established based on the contributions of pores in different sizes.The new method has been used in different blocks.The results show that the new method is more accurate than the traditional ones.展开更多
Slickwater fracturing fluids have gained widespread application in the development of tight oil reservoirs. After the fracturing process, the active components present in slickwater can directly induce spontaneous imb...Slickwater fracturing fluids have gained widespread application in the development of tight oil reservoirs. After the fracturing process, the active components present in slickwater can directly induce spontaneous imbibition within the reservoir. Several variables influence the eventual recovery rate within this procedure, including slickwater composition, formation temperature, degree of reservoir fracture development, and the reservoir characteristics. Nonetheless, the underlying mechanisms governing these influences remain relatively understudied. In this investigation, using the Chang-7 block of the Changqing Oilfield as the study site, we employ EM-30 slickwater fracturing fluid to explore the effects of the drag-reducing agent concentration, imbibition temperature, core permeability, and core fracture development on spontaneous imbibition. An elevated drag-reducing agent concentration is observed to diminish the degree of medium and small pore utilization. Furthermore, higher temperatures and an augmented permeability enhance the fluid flow properties, thereby contributing to an increased utilization rate across all pore sizes. Reduced fracture development results in a lower fluid utilization across diverse pore types. This study deepens our understanding of the pivotal factors affecting spontaneous imbibition in tight reservoirs following fracturing. The findings act as theoretical, technical, and scientific foundations for optimizing fracturing strategies in tight oil reservoir transformations.展开更多
文摘It is difficult to accurately obtain the permeability of complex lithologic reservoirs using conventional methods because they have diverse pore structures and complex seepage mechanisms.Based on in-depth analysis of the limitation of classical nuclear magnetic resonance(NMR)permeability calculation models,and the understanding that the pore structure and porosity are the main controlling factors of permeability,this study provides a new permeability calculation method involving classifying pore sizes by using NMR T_2 spectrum first and then calculating permeability of different sizes of pores.Based on this idea,taking the bioclastic limestone reservoir in the A oilfield of Mid-East as an example,the classification criterion of four kinds of pore sizes:coarse,medium,fine and micro throat,was established and transformed into NMR T_2 standard based on shapes and turning points of mercury intrusion capillary pressure curves.Then the proportions of the four kinds of pore sizes were obtained precisely based on the NMR logging data.A new NMR permeability calculation model of multicomponent pores combinations was established based on the contributions of pores in different sizes.The new method has been used in different blocks.The results show that the new method is more accurate than the traditional ones.
基金The authors sincerely appreciate the financial support from the National Natural Science Foundation of China(No.52074279,51874261).
文摘Slickwater fracturing fluids have gained widespread application in the development of tight oil reservoirs. After the fracturing process, the active components present in slickwater can directly induce spontaneous imbibition within the reservoir. Several variables influence the eventual recovery rate within this procedure, including slickwater composition, formation temperature, degree of reservoir fracture development, and the reservoir characteristics. Nonetheless, the underlying mechanisms governing these influences remain relatively understudied. In this investigation, using the Chang-7 block of the Changqing Oilfield as the study site, we employ EM-30 slickwater fracturing fluid to explore the effects of the drag-reducing agent concentration, imbibition temperature, core permeability, and core fracture development on spontaneous imbibition. An elevated drag-reducing agent concentration is observed to diminish the degree of medium and small pore utilization. Furthermore, higher temperatures and an augmented permeability enhance the fluid flow properties, thereby contributing to an increased utilization rate across all pore sizes. Reduced fracture development results in a lower fluid utilization across diverse pore types. This study deepens our understanding of the pivotal factors affecting spontaneous imbibition in tight reservoirs following fracturing. The findings act as theoretical, technical, and scientific foundations for optimizing fracturing strategies in tight oil reservoir transformations.