期刊文献+
共找到47篇文章
< 1 2 3 >
每页显示 20 50 100
基于截断核范数和PM算子的稀疏面阵角度估计算法
1
作者 龙伟军 徐艺卓 +1 位作者 郭宇轩 杜川 《雷达科学与技术》 北大核心 2024年第4期400-409,共10页
与均匀阵列相比,稀疏阵列可以使天线阵列成本降低,减少数据处理,同时带来更大的阵列孔径提高信号解析能力,在信号处理中有着广泛的应用。但是由于其排布的不规则性,计算量较大,二维面阵合成协方差矩阵存在空洞,对角度估计的准确性造成... 与均匀阵列相比,稀疏阵列可以使天线阵列成本降低,减少数据处理,同时带来更大的阵列孔径提高信号解析能力,在信号处理中有着广泛的应用。但是由于其排布的不规则性,计算量较大,二维面阵合成协方差矩阵存在空洞,对角度估计的准确性造成负面影响,增强了系统对噪声的敏感度。为了克服这些问题,本文提出了一种新的角度估计方法,采用截断核范数以降低噪声的影响,并通过ℓ_(p)范数优化提升信号的稀疏表示,利用交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)算法构造子问题恢复出完整的阵列信号。随后采用子阵划分技术和基于最小二乘的传播算子模型(Propagator Method,PM)对恢复的信号处理,精确估计信号源的方位和俯仰角。仿真结果表明,所提出的角度估计算法在角度精度和时间复杂度方面具有优越性。 展开更多
关键词 ℓ_(p)范数 截断核范数 子阵划分 矩阵填充 二维角度估计
下载PDF
一种基于联合加权和截断的毫米波大规模MIMO信道估计
2
作者 张志能 黄学军 《计算机与现代化》 2024年第4期1-4,37,共5页
提出一种联合加权和截断核范数的毫米波大规模多输入多输出(MIMO)信道估计算法。针对毫米波大规模MIMO信道估计问题中训练和反馈开销大的问题,首先利用毫米波信道天线角度域稀疏的特性,把信道估计问题转化为低秩矩阵恢复问题。采用一种... 提出一种联合加权和截断核范数的毫米波大规模多输入多输出(MIMO)信道估计算法。针对毫米波大规模MIMO信道估计问题中训练和反馈开销大的问题,首先利用毫米波信道天线角度域稀疏的特性,把信道估计问题转化为低秩矩阵恢复问题。采用一种有效而灵活的秩函数——联合加权截断核范数作为核范数的松弛,构造出一种新的矩阵恢复模型用于信道估计问题,以最小化加权截断核范数为优化目标,并利用交替优化框架求解。仿真结果表明,该方法可以有效地提高信道估计的精度,并且具有可靠的收敛性。 展开更多
关键词 低秩矩阵恢复 毫米波大规模MIMO 信道估计 截断核范数
下载PDF
利用Capped核范数正则化的人体运动捕获数据恢复
3
作者 胡文玉 朱雪芳 易云 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2023年第8期1184-1196,共13页
结合人体运动数据的低秩性、噪声稀疏性和时序稳定性,将人体运动捕获数据恢复问题建模为低秩矩阵填充问题.不同于传统方法采用核范数作为矩阵秩函数的凸松弛,引入了非凸的矩阵Capped核范数(CaNN).首先,建立基于CaNN正则化的人体运动捕... 结合人体运动数据的低秩性、噪声稀疏性和时序稳定性,将人体运动捕获数据恢复问题建模为低秩矩阵填充问题.不同于传统方法采用核范数作为矩阵秩函数的凸松弛,引入了非凸的矩阵Capped核范数(CaNN).首先,建立基于CaNN正则化的人体运动捕获数据恢复模型;其次,利用交替方向乘子法,结合截断参数自适应学习与(逆)离散余弦傅里叶变换对模型进行快速求解;最后,在CMU数据集和HDM05数据集上,将CaNN模型与经典的TSMC,TrNN,IRNN-Lp和TSPN模型进行对比实验.恢复误差和视觉效果比较结果表明,CaNN能够有效地对失真数据进行恢复,且恢复后的运动序列与真实运动序列逼近度较高. 展开更多
关键词 运动捕获 低秩结构 矩阵填充 Capped核范数 交替方向乘子法
下载PDF
内外先验结合的多尺度低秩去噪方法
4
作者 张莉 韩靖敏 +1 位作者 钱妍 檀结庆 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2023年第4期491-502,共12页
内部先验的去噪方法侧重图像的低秩性、稀疏性等先验知识,较少考虑多尺度特性;而基于外部先验的去噪方法充分利用自然图像的先验信息,却难以恰当地估计相似块组的秩.针对这些问题,综合考虑不同尺度间的噪声图像信息以及外部清晰图像的... 内部先验的去噪方法侧重图像的低秩性、稀疏性等先验知识,较少考虑多尺度特性;而基于外部先验的去噪方法充分利用自然图像的先验信息,却难以恰当地估计相似块组的秩.针对这些问题,综合考虑不同尺度间的噪声图像信息以及外部清晰图像的统计分布规律,提出内外先验结合的多尺度低秩去噪方法.在预训练阶段,学习外部自然图像数据集的统计分布规律,获得外部自然图像的先验信息;在分组阶段,采用外部先验信息引导噪声图像分组,构建低秩矩阵;在低秩约束阶段,利用构建的多尺度低秩去噪方法对噪声图像进行重建.在Set5,Set12,Kodak,McMaster等经典图像数据集上的实验结果表明,该方法在客观评价指标上有较为明显的改善,如峰值信噪比优于对比方法0.2 dB,并在主观视觉效果上能够保留图像细节和纹理. 展开更多
关键词 图像去噪 低秩矩阵 多尺度特征 高斯混合模型 广义核范数
下载PDF
截断核范数低秩张量核矩阵图像修复算法
5
作者 马瑞虾 张荣国 +2 位作者 胡静 崔红艳 刘小君 《计算机技术与发展》 2023年第6期54-60,共7页
针对张量数据存在不完整和缺少项,导致图像修复过程中信息丢失的问题,提出了一种基于截断核范数和低秩张量核矩阵的图像修复算法TNN-LTKM(truncated nuclear norm low-rank tensor kernel matrix)。首先,引入张量截断核范数,对秩函数进... 针对张量数据存在不完整和缺少项,导致图像修复过程中信息丢失的问题,提出了一种基于截断核范数和低秩张量核矩阵的图像修复算法TNN-LTKM(truncated nuclear norm low-rank tensor kernel matrix)。首先,引入张量截断核范数,对秩函数进行精确逼近,以增强优化模型的鲁棒性;其次,通过增加核心矩阵核范数扩展t-SVD中的张量核范数,定义了一个新的包含张量管秩和核矩阵秩的潜在核范数,来充分提取核张量中的低秩结构,消除冗余;接下来,采用增广拉格朗日法和交替方向乘子法对上述模型进行优化求解;最后,在ZJU、Berkeley和Kodak Lossless 3个数据集上进行实验验证,取相对平方误差、峰值信噪比、结构相似度和CPU运行时间4个评价指标,与现有的6种算法对比表明,TNN-LTKM算法在低采样率下有着良好的表现。 展开更多
关键词 低秩图像修复 张量主成分分析 张量奇异值分解 矩阵核范数 张量截断核范数
下载PDF
基于核范数正则化的抗癌药物组合协同作用预测
6
作者 史磊晶 王波 +2 位作者 张杉 任福全 李玉双 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2023年第3期634-646,共13页
目的抗癌药物联合疗法是一种很有前途的治疗策略。针对特定癌症类型,选择高度协同的药物组合,对提高癌症疗效至关重要。然而,确定具有协同作用的药物组合是一项复杂而困难的工作。本研究旨在完全以数据驱动、计算建模的方式优化抗癌药... 目的抗癌药物联合疗法是一种很有前途的治疗策略。针对特定癌症类型,选择高度协同的药物组合,对提高癌症疗效至关重要。然而,确定具有协同作用的药物组合是一项复杂而困难的工作。本研究旨在完全以数据驱动、计算建模的方式优化抗癌药物组合高通量虚拟筛选,为“旧药重新定位新组合”提供理论参考。方法借鉴矩阵填充思想,构建了基于核范数正则化的计算模型NNRM,用于预测抗癌药物组合的协同得分和协同状态。针对固定细胞系构造对称的协同得分观测矩阵;采用分折技巧将观测矩阵稀疏化;借助“交替方向乘子法”和“软阈值估计”求解模型。结果将NNRM应用于O’Neil团队发布的数据集,预测的协同得分与观测值之间的均方根误差为14.78,预测的协同状态准确率为0.94,优于随机森林(RF)和支持向量机(SVM),完全可以与深度学习模型相媲美。此外,NNRM预测的部分缺失值结果与已有研究或临床实践相吻合。结论NNRM可实现大规模、批量预测抗癌药物组合的协同作用,极大地降低了已有模型对数据的要求和计算成本,缩短了高通量虚拟筛选的测试时间,可以作为抗癌药物组合高通量虚拟筛选的可选择工具。 展开更多
关键词 抗癌药物组合 协同作用 高通量虚拟筛选 矩阵填充 核范数正则化 计算模型
下载PDF
矩阵补全算法研究进展 被引量:14
7
作者 史加荣 郑秀云 周水生 《计算机科学》 CSCD 北大核心 2014年第4期13-20,共8页
作为压缩感知理论的重要发展,矩阵补全与恢复已成为信号与图像处理的一种新的强有力的工具。综述了矩阵补全算法的最新研究进展。首先分析了核范数最小化模型的几种主要的矩阵补全算法,并对这些算法的迭代过程及原理进行了详细的阐述。... 作为压缩感知理论的重要发展,矩阵补全与恢复已成为信号与图像处理的一种新的强有力的工具。综述了矩阵补全算法的最新研究进展。首先分析了核范数最小化模型的几种主要的矩阵补全算法,并对这些算法的迭代过程及原理进行了详细的阐述。其次讨论了矩阵补全的低秩矩阵分解模型,并列出了近年来出现的求解此模型的新算法。然后补充了上述两种模型的衍生版本,指出了相应的求解方法。在数值实验中,对文中所讨论的主要矩阵补全算法的性能进行了比较。最后给出了矩阵补全算法的未来研究方向及重点。 展开更多
关键词 矩阵补全 低秩 核范数最小化 低秩矩阵分解 压缩感知 低秩矩阵恢复
下载PDF
缺失信息的主成份分析 被引量:1
8
作者 陶敏 唐诚 《南京邮电大学学报(自然科学版)》 北大核心 2013年第1期96-100,共5页
关于缺失的信息的主成份分析已经受到越来越多学者的关注。针对此问题,文中提出了一个新模型。通过对原模型做等价变形,转化成可分凸规划。然后,考虑到其具有特殊结构,采用交替方向法求解。该方法的优点是可以充分利用问题的特殊结构,... 关于缺失的信息的主成份分析已经受到越来越多学者的关注。针对此问题,文中提出了一个新模型。通过对原模型做等价变形,转化成可分凸规划。然后,考虑到其具有特殊结构,采用交替方向法求解。该方法的优点是可以充分利用问题的特殊结构,使得求解过程中每个子问题都具有显式解。仿真结果证明该方法与一些经典的一阶方法相比更加有效。 展开更多
关键词 交替方向法 矩阵分解 低秩矩阵 核范数
下载PDF
不完全鲁棒主成分分析的正则化方法及其在背景建模中的应用 被引量:3
9
作者 史加荣 郑秀云 杨威 《计算机应用》 CSCD 北大核心 2015年第10期2824-2827,2832,共5页
针对现有的鲁棒主成分分析(RPCA)方法忽略序列数据的连续性及不完整性的情况,提出了一种低秩矩阵恢复模型——正则化不完全鲁棒主成分分析(RIRPCA)。首先基于序列数据连续性的度量函数建立了RIRPCA模型,即最小化矩阵核范数、L1范数和正... 针对现有的鲁棒主成分分析(RPCA)方法忽略序列数据的连续性及不完整性的情况,提出了一种低秩矩阵恢复模型——正则化不完全鲁棒主成分分析(RIRPCA)。首先基于序列数据连续性的度量函数建立了RIRPCA模型,即最小化矩阵核范数、L1范数和正则项的加权组合;然后使用增广拉格朗日乘子法来求解所提出的凸优化模型,此算法具有良好的可扩展性和较低的计算复杂度;最后,将RIRPCA应用到视频背景建模中。实验结果表明,RIRPCA比矩阵补全和不完全RPCA等方法在恢复丢失元素和分离前景上具有优越性。 展开更多
关键词 鲁棒主成分分析 低秩矩阵恢复 背景建模 核范数最小化 增广拉格朗日乘子法
下载PDF
基于谱正则化算法的大数据矩阵完备化研究 被引量:1
10
作者 王金甲 闫利霄 洪文学 《燕山大学学报》 CAS 2014年第5期428-431,470,共5页
矩阵完备化是基于部分观测数据来完成全部矩阵预测的问题。随着互联网技术的发展,大数据时代的来临,大数据矩阵中大多数据依然是空白的,需要补充,即大数据存在矩阵完备化的问题。本文利用谱正则化模型和算法来解决大数据的矩阵完备化问... 矩阵完备化是基于部分观测数据来完成全部矩阵预测的问题。随着互联网技术的发展,大数据时代的来临,大数据矩阵中大多数据依然是空白的,需要补充,即大数据存在矩阵完备化的问题。本文利用谱正则化模型和算法来解决大数据的矩阵完备化问题,该方法将矩阵完备化问题整理成核范数最小二乘问题,再通过截断奇异值分解、软输入算法和硬输入算法给出了一系列正则化低秩解。最后基于实际的Netflix大数据的实验结果证明了本文的方法。 展开更多
关键词 大数据 矩阵完备化 谱正则化 核范数 截断奇异值分解
下载PDF
基于双核范数鲁棒矩阵分解的遮挡图像恢复 被引量:1
11
作者 史加荣 刘晨 《山东科技大学学报(自然科学版)》 CAS 北大核心 2021年第4期86-93,共8页
低秩矩阵分解是计算机视觉、机器学习和数据挖掘中普遍使用的数据分析工具。矩阵分解方法可用于连续遮挡的图像数据的恢复,而低秩矩阵分解可转化为核范数优化模型。为了增强矩阵分解模型的鲁棒性,提出基于双核范数的鲁棒矩阵分解方法,... 低秩矩阵分解是计算机视觉、机器学习和数据挖掘中普遍使用的数据分析工具。矩阵分解方法可用于连续遮挡的图像数据的恢复,而低秩矩阵分解可转化为核范数优化模型。为了增强矩阵分解模型的鲁棒性,提出基于双核范数的鲁棒矩阵分解方法,该方法将每个数据矩阵分解为低秩干净数据、低秩噪声数据和稀疏噪声数据之和。建立最小化矩阵双核范数与L1范数加权组合的优化模型,并给出求解该模型的交替方向乘子法。在真实数据集上的实验结果验证了所提方法的可行性与有效性。 展开更多
关键词 图像恢复 双核范数 鲁棒 低秩矩阵分解 交替方向乘子法
下载PDF
基于稀疏低秩分解的杂草种子配准
12
作者 张明 朱俊平 蔡骋 《计算机工程与设计》 CSCD 北大核心 2012年第10期3959-3963,共5页
针对杂草种子识别在实际应用中的困难,提出了一种适用于杂草种子配准的稀疏低秩分解算法。阐述了稀疏低秩算法的原理和求解方法,原本有等式约束且非凸的问题可以通过求解核范式和l1范式的无约束凸优化问题得到很好的配准结果。为了验证... 针对杂草种子识别在实际应用中的困难,提出了一种适用于杂草种子配准的稀疏低秩分解算法。阐述了稀疏低秩算法的原理和求解方法,原本有等式约束且非凸的问题可以通过求解核范式和l1范式的无约束凸优化问题得到很好的配准结果。为了验证配准工作的重要性,运用k折交叉检验对比配准前后的识别率差异。实验结果表明,基于稀疏低秩分解的配准算法能够提高杂草种子的识别率,为实际中的杂草种子识别提供了可行方案。 展开更多
关键词 图像配准 稀疏低秩分解 凸优化 核范式 雅克比矩阵 k折交叉检验检验
下载PDF
鲁棒核范数降维在图像去噪中的应用研究
13
作者 徐群和 谢德红 《计算机工程》 CAS CSCD 北大核心 2015年第12期206-211,共6页
针对核范数降维去噪方法对强噪声去除效果不佳的问题,提出一种鲁棒核范数降维的去噪方法。该方法在核范数最小化的思想下构建图像降维的代价函数,并在代价函数中增加噪声的L1范数作为其正规化项,用以改善降维时噪声对降维的影响,提高降... 针对核范数降维去噪方法对强噪声去除效果不佳的问题,提出一种鲁棒核范数降维的去噪方法。该方法在核范数最小化的思想下构建图像降维的代价函数,并在代价函数中增加噪声的L1范数作为其正规化项,用以改善降维时噪声对降维的影响,提高降维的鲁棒性,通过最小化代价函数,从高维的噪声图像中迭代求解出低秩的图像,以达到去噪的目的。实验结果表明,与核范数降维方法和三维块匹配(BM3D)方法相比,该方法能获得更好的去噪效果。 展开更多
关键词 降维 核范数 代价函数 低秩矩阵逼近 鲁棒性
下载PDF
结构化矩阵优化的高光谱图像噪声去除算法 被引量:11
14
作者 徐宏辉 郑建炜 +1 位作者 秦梦洁 陈婉君 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2021年第1期68-80,共13页
受带噪线路或电子感应设备老化等影响,高光谱图像在编码和传输过程中往往会被混合噪声污染,严重影响后续图像检测、分类、跟踪、解卷等应用的性能.为实现有效地去噪,将零化滤波技术扩展至高光谱图像修复中,提出一种结构化矩阵恢复的混... 受带噪线路或电子感应设备老化等影响,高光谱图像在编码和传输过程中往往会被混合噪声污染,严重影响后续图像检测、分类、跟踪、解卷等应用的性能.为实现有效地去噪,将零化滤波技术扩展至高光谱图像修复中,提出一种结构化矩阵恢复的混合噪声去除算法.首先根据高光谱图像不同波段之间的关联性和局部空间邻域的关滑性,将不同图像子块构建成具有Hankel结构的低秩矩阵;然后考虑Hankel化线性操作并不破坏混合噪声的稀疏状态,将稀疏性约束作为先验条件;最后使用截断核范数和组稀疏范数分别替代低秩和稀疏约束函数,构建双先验条件下的目标模型,并采用交替方向乘子法进行变量优化求解.整体去噪流程通过图像patch分组、子块优化和patch重组3个步骤实现.通过多组行业通用高光谱数据进行实验的结果表明,该算法在视觉效果和定量评价PSNR,SSIM以及SAD上都明显优于现有的高光谱噪声去除算法. 展开更多
关键词 高光谱图像 图像去噪 结构化矩阵 截断核范数 交替方向乘子法
下载PDF
基于分块集成的图像聚类算法 被引量:3
15
作者 刘淑君 魏莱 《计算机科学》 CSCD 北大核心 2020年第6期170-175,共6页
基于谱聚类的子空间聚类算法已经显示出良好的效果,但是传统的子空间聚类算法需要将图像进行向量化处理,而这种向量化会导致图像本身携带的二维结构信息的丢失。为了减少这种信息的丢失,文中提出了基于分块集成的图像聚类算法(Block Int... 基于谱聚类的子空间聚类算法已经显示出良好的效果,但是传统的子空间聚类算法需要将图像进行向量化处理,而这种向量化会导致图像本身携带的二维结构信息的丢失。为了减少这种信息的丢失,文中提出了基于分块集成的图像聚类算法(Block Integration Based Image Clustering,BI-CI)。首先,将图像数据分为若干矩阵块;然后,利用核范数矩阵回归构造基于某一矩阵块的系数矩阵,同时提出了一种依据矩阵块秩信息设定各个矩阵块的权重方法;最后,通过每一系数矩阵及其所对应矩阵块的权重,得到整体系数矩阵。在此系数矩阵上,利用谱聚类算法得到最终的聚类结果。在4个图像数据集上的实验表明,相比现有算法,所提算法具有更强的鲁棒性,可以获得更优的聚类效果。 展开更多
关键词 子空间聚类 矩阵块 核范数 矩阵回归
下载PDF
基于噪声空间结构嵌入和高维梯度方向嵌入的鲁棒人脸识别方法 被引量:1
16
作者 李小薪 李晶晶 +1 位作者 贺霖 刘志勇 《计算机科学》 CSCD 北大核心 2018年第4期285-290,共6页
基于核范数的矩阵回归方法(Nuclear norm based Matrix Regression,NMR)对人脸图像中因遮挡和光照变化等噪声引发的误差具有很强的鲁棒性。分析了NMR的鲁棒性的基本原理:首先,误差的核范数度量的是误差在其主方向上的能量,而主方向上的... 基于核范数的矩阵回归方法(Nuclear norm based Matrix Regression,NMR)对人脸图像中因遮挡和光照变化等噪声引发的误差具有很强的鲁棒性。分析了NMR的鲁棒性的基本原理:首先,误差的核范数度量的是误差在其主方向上的能量,而主方向上的能量通常都去除了常规噪声的干扰;其次,误差的核范数度量嵌入了噪声的空间结构信息,而噪声的空间结构对于表示并排除噪声的影响至关重要。然而,仅仅考虑噪声的空间结构并不能有效消除噪声的影响。将具有噪声抑制能力的高维梯度方向(High-dimensional Gradient Orientation,HGO)特征嵌入NMR,提出了一种基于高维梯度方向特征的NMR方法(High-dimensional Gradient Orientations-based NMR,HGO-NMR)极大地提升了NMR的识别性能。其重要意义在于指出噪声空间结构信息和噪声抑制机制对于面向现实的鲁棒人脸识别系统同等重要,单方面强调其中任何一种机制都将导致不稳定的识别性能。 展开更多
关键词 人脸识别 图像梯度方向 核范数 矩阵回归
下载PDF
一种新的鲁棒主成分分析方法及其应用 被引量:5
17
作者 陈甲英 赵建伟 曹飞龙 《中国计量学院学报》 2016年第1期113-120,共8页
背景建模在视频运动分析中具有重要作用.视频序列背景图像通常具有低秩性,为了更好地刻画该特性,精确提取视频背景,提出了一种基于截断核范数的鲁棒主成分分析模型.同时设计了一种两步迭代算法来求解该模型,最后将该算法应用于视频背景... 背景建模在视频运动分析中具有重要作用.视频序列背景图像通常具有低秩性,为了更好地刻画该特性,精确提取视频背景,提出了一种基于截断核范数的鲁棒主成分分析模型.同时设计了一种两步迭代算法来求解该模型,最后将该算法应用于视频背景建模.不同视频数据库实验表明,该算法对于求解背景建模问题是有效的. 展开更多
关键词 矩阵恢复 截断核范数 鲁棒主成分分析 背景建模
下载PDF
矩阵秩优化问题的一种分离算法 被引量:1
18
作者 赵新斌 单晓成 《沈阳师范大学学报(自然科学版)》 CAS 2012年第4期454-458,共5页
具有线性约束的最小矩阵秩优化问题在控制、信号处理、系统识别等领域都有着广泛的应用。在矩阵优化问题中,矩阵的秩能够反应数据的稀疏性,但由于矩阵秩函数的非凸性,矩阵秩优化问题一般解决起来比较困难。目前,矩阵核范数的应用对于解... 具有线性约束的最小矩阵秩优化问题在控制、信号处理、系统识别等领域都有着广泛的应用。在矩阵优化问题中,矩阵的秩能够反应数据的稀疏性,但由于矩阵秩函数的非凸性,矩阵秩优化问题一般解决起来比较困难。目前,矩阵核范数的应用对于解决矩阵秩优化问题提供了有效的工具。具有线性约束的最小核范数问题为最小秩问题最紧的凸松弛问题,对于最小核范数问题,如今已存在大量的算法,而可以解决最小化2个下半连续凸函数之和这一类优化问题的Douglas-Rachford分离技巧也同样可以用于此类问题的研究,运用此类技巧得到的算法具有良好的稳健性、有效性和收敛性。 展开更多
关键词 矩阵秩优化 核范数 Douglas-Rachford分离技巧 邻接算子
下载PDF
双加权多视角子空间聚类算法 被引量:3
19
作者 曹容玮 祝继华 +3 位作者 郝问裕 张长青 张茁涵 李钟毓 《软件学报》 EI CSCD 北大核心 2022年第2期585-597,共13页
多视角子空间聚类方法为高维多视角数据的聚类问题提供了大量的解决方案.但是现有的子空间方法仍不能很好地解决以下两个问题:(1)如何利用不同视角的差异性进行学习获得一个优质的共享系数矩阵;(2)如何增强共享系数矩阵的低秩性.针对以... 多视角子空间聚类方法为高维多视角数据的聚类问题提供了大量的解决方案.但是现有的子空间方法仍不能很好地解决以下两个问题:(1)如何利用不同视角的差异性进行学习获得一个优质的共享系数矩阵;(2)如何增强共享系数矩阵的低秩性.针对以上问题,提出了一种有效的双加权多视角子空间聚类算法.该算法首先通过子空间自表达学习到每个视角的系数矩阵,然后采用自适应权重策略构建一个共享系数矩阵,最后利用加权核范数逼近系数矩阵的秩,使得系数矩阵的表示更加低秩,进而取得更好的聚类结果.采用增广拉格朗日乘子法来优化目标函数,并在6个广泛使用的数据集上进行实验,验证了该算法的优越性. 展开更多
关键词 多视角子空间聚类 系数矩阵 权重 加权核范数 低秩
下载PDF
低秩矩阵在CT图像重建中的应用 被引量:1
20
作者 马海英 宣士斌 向顺灵 《广西民族大学学报(自然科学版)》 CAS 2016年第3期86-92,共7页
CT图像重建是医学影像学的重要研究课题,但由于噪声对医学CT图像的影响比较大,为了在不牺牲图像精度和空间分辨率的情况下,重建出噪声含量最低的图像,就要选择合适的去噪方法对图像进行预处理.针对于此,笔者提出一种新的CT图像重建算法... CT图像重建是医学影像学的重要研究课题,但由于噪声对医学CT图像的影响比较大,为了在不牺牲图像精度和空间分辨率的情况下,重建出噪声含量最低的图像,就要选择合适的去噪方法对图像进行预处理.针对于此,笔者提出一种新的CT图像重建算法,重建过程分成两个步骤:首先用低秩矩阵加权核范数最小化(WNNM)进行图像去噪,再用低秩矩阵分解(LRMD)更新CT图像.实验结果表明,提出的方法具有较强的细节保持能力,低秩矩阵的特性简化计算过程,降低算法复杂度,同时保证了重建图像的去噪效果. 展开更多
关键词 低秩矩阵 核范数 CT图像重建
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部