In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is ...In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is a technological need to improve heat supply schemes to increase their environmental friendliness and efficiency. The paper proves the feasibility of using the heat-feeding mode of ASHPs for urban heat supply by heating the network water with steam taken from the turbine. The ratio of electric and thermal power of a “nuclear” combined heat and power plant is given. The advantage of using a heat pump, which provides twice as much electrical power with the same heat output, is established. Taking into account that heat in these modes is supplied with different potential, the energy efficiency was used to compare these options. To increase the heat supply capacity, a scheme with the use of a high-pressure heater in the backpressure mode and with the heating of network water with hot steam was proposed. Heat supply from ASHPs is efficient and environmentally friendly even in the case of significant remoteness of heat consumers.展开更多
A plan of surveillance monitoring Qinshan Nuclear Power Plant (QNPP) has been implemented since 1992, the objective of which is to establish the database of environmental radiation information around QNPP, and to dete...A plan of surveillance monitoring Qinshan Nuclear Power Plant (QNPP) has been implemented since 1992, the objective of which is to establish the database of environmental radiation information around QNPP, and to detect any unplanned discharge of radioactive materials from QNPP. This paper presents the monitoring results for radionuclide concentrations in the environmental matrices before and after QNPP operation. The radionuclide con- centrations in vegetation, food, atmosphere, soil and littoral soil samples have been determined. After operation of QNPP, the mean values of 137Cs, Sr and H in water are 0.6, 4.9 mBq/L and 1.7 Bq/L, respectively; the mean values 90 3 of137Cs in soil and littoral soil are 3.5 and 2.7 Bq/kg, respectively; the mean values of137Cs in rice, green cabbage, meat, mullet, milk and tea are 0.033, 0.039, 0.081, 0.069, 0.018 and 0.62 Bq/kg, respectively; the mean values of 90 Sr in rice, green cabbage and tea are 0.081, 0.315 and 4.1 Bq/kg, respectively; gross β activity in fallout is 0.9 Bq·m-2·d-1. Compared with the data before QNPP’s operation, no significant difference has heen observed in the radioactivity of137Cs, Sr, H and the gross β activity in ambient environmental matrices from 1992 to 2001, and 90 3 there are only some fluctuations within the range of background.展开更多
Today, the most urgent problem of the existing and future nuclear power industry is to ensure the nuclear and environmental safety of the operation of nuclear power reactor units (NPPs) and nuclear power plants (NPPs)...Today, the most urgent problem of the existing and future nuclear power industry is to ensure the nuclear and environmental safety of the operation of nuclear power reactor units (NPPs) and nuclear power plants (NPPs). It is solved thanks to the application of deeply echeloned protection and an anti-accident complex of methods and means for effective control of the operation of active reactor zones (AZR). However, the danger of existing NPPs in the world from time to time manifests itself in the form of severe post-project accidents and catastrophes with the release into the environment of a significant amount of radioactive materials dangerous for all living things. The results of the analysis show that the unconditional fulfillment of the main requirements of nuclear environmental safety and biocompatibility is possible only in the so-called wave nuclear reactor of the G-V generation, which, unlike reactors of the previous generations III, II+ and IV, does not require supercritical loading of the core with nuclear fuel. In the active zone of this reactor, nuclear-physical processes governed by physical law are implemented, which exclude the operator’s participation in regulating the reactivity of the reactor’s active zone, which makes it the reactor with the highest level of nuclear and environmental safety today, which is based on the principles of so-called internal safety, free from the human factor. The possibility of burning nuclear fuel based on U238 and Th232 in it expands the reserves of energetic nuclear fuel almost to inexhaustibility. The technology of nuclear reactors of the G5 generation through the secondary use of spent irradiated nuclear fuel (SNF) for the production of energy and energy raw materials with simultaneous burning of it to an environmentally safe state is able to quickly reduce the available stocks and further production of dangerous SNF, guarantee the nuclear and environmental safety of NPPs with reactors G5 and to technologically make nuclear post-project accidents and disasters impossible at the level of physical law with the complete elimination of the human factor.展开更多
Environmental characteristics and phytoplankton community structure were investigated in two aquaculture areas in Dapeng Cove of Daya Bay, South China Sea, between April 2005 and June 2006. Phytoplankton abundance ran...Environmental characteristics and phytoplankton community structure were investigated in two aquaculture areas in Dapeng Cove of Daya Bay, South China Sea, between April 2005 and June 2006. Phytoplankton abundance ranged between 5.0 and 8877.5 cells/mL, with an average of 751.8 cells/mL. The seasonal cycle of phytoplankton were demonstrated by frequent oscillations, with recurrent high abundances from late spring to autumn and a peak stage in late winter. Diatoms were the predominant phytoplankton group, accounting for 93.21% of the total abundance. The next most abundant group was the dinoflagellates, which made up only 1.24% of total abundance. High concentrations of Alexandrium tamarense (Lebour) Balech with a maximum of 603.0 cells/mL were firstly recorded in this area known for high rates of paralytic shellfish poisoning (PSP) contamination. Temperatures and salinities were within the suitable values for the growth of phytoplankton, and were important in phytoplankton seasonal fluctuations. The operation of the Daya Bay Nuclear Power Station (DNPS) exerts influences on the phytoplankton community and resulted in the high abundances of toxic dinoflagellate species during the winter months. Dissolved inorganic nitrogen (DIN) and dissolved silicate (DSi) were sufficient, and rarely limited for the growth of phytoplankton. Dissolved inorganic phosphorus (DIP) was the most necessary element for phytoplankton growth. The enriched environments accelerated the growth of small diatoms, and made for the shift in predominant species from large diatom Rhizosolenia spp. to chain-forming diatoms such as Skeletonema costatum, Pseudo-nitzschia spp. and Thalassiosira subtilis.展开更多
文摘In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is a technological need to improve heat supply schemes to increase their environmental friendliness and efficiency. The paper proves the feasibility of using the heat-feeding mode of ASHPs for urban heat supply by heating the network water with steam taken from the turbine. The ratio of electric and thermal power of a “nuclear” combined heat and power plant is given. The advantage of using a heat pump, which provides twice as much electrical power with the same heat output, is established. Taking into account that heat in these modes is supplied with different potential, the energy efficiency was used to compare these options. To increase the heat supply capacity, a scheme with the use of a high-pressure heater in the backpressure mode and with the heating of network water with hot steam was proposed. Heat supply from ASHPs is efficient and environmentally friendly even in the case of significant remoteness of heat consumers.
文摘A plan of surveillance monitoring Qinshan Nuclear Power Plant (QNPP) has been implemented since 1992, the objective of which is to establish the database of environmental radiation information around QNPP, and to detect any unplanned discharge of radioactive materials from QNPP. This paper presents the monitoring results for radionuclide concentrations in the environmental matrices before and after QNPP operation. The radionuclide con- centrations in vegetation, food, atmosphere, soil and littoral soil samples have been determined. After operation of QNPP, the mean values of 137Cs, Sr and H in water are 0.6, 4.9 mBq/L and 1.7 Bq/L, respectively; the mean values 90 3 of137Cs in soil and littoral soil are 3.5 and 2.7 Bq/kg, respectively; the mean values of137Cs in rice, green cabbage, meat, mullet, milk and tea are 0.033, 0.039, 0.081, 0.069, 0.018 and 0.62 Bq/kg, respectively; the mean values of 90 Sr in rice, green cabbage and tea are 0.081, 0.315 and 4.1 Bq/kg, respectively; gross β activity in fallout is 0.9 Bq·m-2·d-1. Compared with the data before QNPP’s operation, no significant difference has heen observed in the radioactivity of137Cs, Sr, H and the gross β activity in ambient environmental matrices from 1992 to 2001, and 90 3 there are only some fluctuations within the range of background.
文摘Today, the most urgent problem of the existing and future nuclear power industry is to ensure the nuclear and environmental safety of the operation of nuclear power reactor units (NPPs) and nuclear power plants (NPPs). It is solved thanks to the application of deeply echeloned protection and an anti-accident complex of methods and means for effective control of the operation of active reactor zones (AZR). However, the danger of existing NPPs in the world from time to time manifests itself in the form of severe post-project accidents and catastrophes with the release into the environment of a significant amount of radioactive materials dangerous for all living things. The results of the analysis show that the unconditional fulfillment of the main requirements of nuclear environmental safety and biocompatibility is possible only in the so-called wave nuclear reactor of the G-V generation, which, unlike reactors of the previous generations III, II+ and IV, does not require supercritical loading of the core with nuclear fuel. In the active zone of this reactor, nuclear-physical processes governed by physical law are implemented, which exclude the operator’s participation in regulating the reactivity of the reactor’s active zone, which makes it the reactor with the highest level of nuclear and environmental safety today, which is based on the principles of so-called internal safety, free from the human factor. The possibility of burning nuclear fuel based on U238 and Th232 in it expands the reserves of energetic nuclear fuel almost to inexhaustibility. The technology of nuclear reactors of the G5 generation through the secondary use of spent irradiated nuclear fuel (SNF) for the production of energy and energy raw materials with simultaneous burning of it to an environmentally safe state is able to quickly reduce the available stocks and further production of dangerous SNF, guarantee the nuclear and environmental safety of NPPs with reactors G5 and to technologically make nuclear post-project accidents and disasters impossible at the level of physical law with the complete elimination of the human factor.
基金supported by the National Natural Science Foundation of China(No.40673062,40773063, U0633006)
文摘Environmental characteristics and phytoplankton community structure were investigated in two aquaculture areas in Dapeng Cove of Daya Bay, South China Sea, between April 2005 and June 2006. Phytoplankton abundance ranged between 5.0 and 8877.5 cells/mL, with an average of 751.8 cells/mL. The seasonal cycle of phytoplankton were demonstrated by frequent oscillations, with recurrent high abundances from late spring to autumn and a peak stage in late winter. Diatoms were the predominant phytoplankton group, accounting for 93.21% of the total abundance. The next most abundant group was the dinoflagellates, which made up only 1.24% of total abundance. High concentrations of Alexandrium tamarense (Lebour) Balech with a maximum of 603.0 cells/mL were firstly recorded in this area known for high rates of paralytic shellfish poisoning (PSP) contamination. Temperatures and salinities were within the suitable values for the growth of phytoplankton, and were important in phytoplankton seasonal fluctuations. The operation of the Daya Bay Nuclear Power Station (DNPS) exerts influences on the phytoplankton community and resulted in the high abundances of toxic dinoflagellate species during the winter months. Dissolved inorganic nitrogen (DIN) and dissolved silicate (DSi) were sufficient, and rarely limited for the growth of phytoplankton. Dissolved inorganic phosphorus (DIP) was the most necessary element for phytoplankton growth. The enriched environments accelerated the growth of small diatoms, and made for the shift in predominant species from large diatom Rhizosolenia spp. to chain-forming diatoms such as Skeletonema costatum, Pseudo-nitzschia spp. and Thalassiosira subtilis.