Good practices of maintenance optimization in nuclear power field need to be effectively consolidated and inherited,and maintenance optimization can provide technology support to create a long-term reliable and econom...Good practices of maintenance optimization in nuclear power field need to be effectively consolidated and inherited,and maintenance optimization can provide technology support to create a long-term reliable and economic operation for nuclear power plants( NPPs) especially for a large number of nuclear powers under construction. Based on the development and application of maintenance template in developed countries,and combining with reliability-centered maintenance( RCM) analysis results and maintenance experience data over the past ten years in domestic NPPs, the development process of maintenance template was presented for Chinese pressurized water reactor( PWR) NPP,and the application of maintenance template to maintenance program development and maintenance optimization combined with cases were demonstrated. A shortcut was provided for improving the efficiency of maintenance optimization in domestic PWR NPP,and help to realize a safe,reliable,and economic operation for domestic NPPs.展开更多
The digital reactor protection system(RPS)is one of the most important digital instrumentation and control(I&C)systems utilized in nuclear power plants(NPPs).It ensures a safe reactor trip when the safety-related ...The digital reactor protection system(RPS)is one of the most important digital instrumentation and control(I&C)systems utilized in nuclear power plants(NPPs).It ensures a safe reactor trip when the safety-related parameters violate the operational limits and conditions of the reactor.Achieving high reliability and availability of digital RPS is essential to maintaining a high degree of reactor safety and cost savings.The main objective of this study is to develop a general methodology for improving the reliability of the RPS in NPP,based on a Bayesian Belief Network(BBN)model.The structure of BBN models is based on the incorporation of failure probability and downtime of the RPS I&C components.Various architectures with dual-state nodes for the I&C components were developed for reliability-sensitive analysis and availability optimization of the RPS and to demonstrate the effect of I&C components on the failure of the entire system.A reliability framework clarified as a reliability block diagram transformed into a BBN representation was constructed for each architecture to identify which one will fit the required reliability.The results showed that the highest availability obtained using the proposed method was 0.9999998.There are 120 experiments using two common component importance measures that are applied to define the impact of I&C modules,which revealed that some modules are more risky than others and have a larger effect on the failure of the digital RPS.展开更多
This study aims to thoroughly investigate the axial power peaking factors (PPF) within the low-enriched uranium (LEU) core of the Ghana Research Reactor-1 (GHARR-1). This study uses advanced simulation tools, like the...This study aims to thoroughly investigate the axial power peaking factors (PPF) within the low-enriched uranium (LEU) core of the Ghana Research Reactor-1 (GHARR-1). This study uses advanced simulation tools, like the MCNPX code for analysing neutron behavior and the PARET/ANL code for understanding power variations, to get a clearer picture of the reactor’s performance. The analysis covers the initial six years of GHARR-1’s operation and includes projections for its whole 60-year lifespan. We closely observed the patterns of both the highest and average PPFs at 21 axial nodes, with measurements taken every ten years. The findings of this study reveal important patterns in power distribution within the core, which are essential for improving the safety regulations and fuel management techniques of the reactor. We provide a meticulous approach, extensive data, and an analysis of the findings, highlighting the significance of continuous monitoring and analysis for proactive management of nuclear reactors. The findings of this study not only enhance our comprehension of nuclear reactor safety but also carry significant ramifications for sustainable energy progress in Ghana and the wider global context. Nuclear engineering is essential in tackling global concerns, such as the demand for clean and dependable energy sources. Research on optimising nuclear reactors, particularly in terms of safety and efficiency, is crucial for the ongoing advancement and acceptance of nuclear energy.展开更多
It is very important to reduce the construction duration of the Reactor Containment Building (RCB) when considering the more than 50 months on average from concrete placement to completion. Through a case study, this ...It is very important to reduce the construction duration of the Reactor Containment Building (RCB) when considering the more than 50 months on average from concrete placement to completion. Through a case study, this study performs a pre-study for the reduction of construction duration in nuclear power plant project based on construction process of the RCB. The actual data of the case study have been collected and analyze the process and the external wall drawings of the RCB with construction practitioners. As a result of that, it is necessary to modularize the external wall form for equipment hatch and to extend the height of one layer of the external wall form to reduce the construction duration of RCB. The results of this study will be utilized to reduce construction duration of the nuclear power plant.展开更多
Recently, plant construction throughout the world, including nuclear power plant construction, has grown significantly. The scale of Korea’s nuclear power plant construction in particular, has increased gradually sin...Recently, plant construction throughout the world, including nuclear power plant construction, has grown significantly. The scale of Korea’s nuclear power plant construction in particular, has increased gradually since it won a contract for a nuclear power plant construction project in the United Arab Emirates in 2009. However, time and monetary resources have been lost in some nuclear power plant construction sites due to lack of risk management ability. The need to prevent losses at nuclear power plant construction sites has become more urgent because it demands professional skills and large-scale resources. Therefore, in this study, the Analytic Hierarchy Process (AHP) and Fuzzy Analytic Hierarchy Process (FAHP) were applied in order to make comparisons between decision-making methods, to assess the potential risks at nuclear power plant construction sites. To suggest the appropriate choice between two decision-making methods, a survey was carried out. From the results, the importance and the priority of 24 risk factors, classified by process, cost, safety, and quality, were analyzed. The FAHP was identified as a suitable method for risk assessment of nuclear power plant construction, compared with risk assessment using the AHP. These risk factors will be able to serve as baseline data for risk management in nuclear power plant construction projects.展开更多
Qinshan Phase Ⅲ(PHWR)Nuclear Power Plant,the first commercial heavy water reactor nuclear power plant in China,was the biggest trade project performed between the governments of China and Canada.As the owner,the Thir...Qinshan Phase Ⅲ(PHWR)Nuclear Power Plant,the first commercial heavy water reactor nuclear power plant in China,was the biggest trade project performed between the governments of China and Canada.As the owner,the Third Qinshan Nuclear Power Company(TQNPC)persisted in independent innovation management during the project construction,commissioning and self-dependent operation,efficiently realizing the three controls of the project,i.e.quality control,schedule control and investment control,and persisted in technical improvement on the basis of digestion and absorption of CANDU-6 technology to improve the unit safety and reliability.The project construction practice has helped China's nuclear power project management to becomeprogrammed,computerized,standardized and internationalized management from the existing basis.After completion of the project,with unit safe and steady operation as the prerequisite,TQNPC performed several technical modifications and innovations to continuously improve the unit performance.In the area of staff development,TQNPC paid much attention to cultivation of corporate culture,strengthed staff training and built up a good circulating mechanism with staff training and project construction promoting each other.Further to "Zero Breakthrough" and a new step forward of locolization successfully realized in Qinshan Nuclear Power Plant and Nuclear Power Qinshan Joint Venture Company,the improvement and developemnt of nuclear power project management level in Qinshan Phase Ⅲ(PHWR)Nuclear Power Plant provided reference for promotion of nuclear power development in China and standardized management of introducing large imported project.展开更多
New research developments suggest that nuclear reactors using fusion may enter the market sooner than imagined even for mobile applications, like merchant ship propulsion and remote power generation. This article aims...New research developments suggest that nuclear reactors using fusion may enter the market sooner than imagined even for mobile applications, like merchant ship propulsion and remote power generation. This article aims at pointing such developments and how they could affect nuclear fusion. The method is enumerating the main nuclear reactors concepts, identifying new technological or theoretical developments useful to nuclear field, and analysing how new recombination could affect feasibility of nuclear fusion. New technologies or experimental results do not always work the way people imagine, being better or worse for intended effects or even bringing completely unforeseen effects. Results point the following designs could be successful, in descending order of potential: aneutronic nuclear reactions using lattice confinement, aneutronic nuclear reactions using inertial along magnetic confinement, hybrid fission-lattice confinement fusion, and fission reactions.展开更多
Bangladesh is densely populated country with a population of 16 core and small area about 1, 47,570 Square-Kilometer. Among these large population only a few section are taking the blessings of power. But now at a sta...Bangladesh is densely populated country with a population of 16 core and small area about 1, 47,570 Square-Kilometer. Among these large population only a few section are taking the blessings of power. But now at a stage government can’t give the power even to that special section. Because day by day population is increasing and also power demands is also increasing. Governments are trying to meet up the power crisis in Bangladesh by taking various steps. Like small (10-20MW) power plants, IPP, Rental power plant etc. But these are not a permanent solution. More over these rental and IPP are mainly oil and gas based, which are very costly and not very efficient. Besides these government are going with coal based power station and small scale renewable energy. But coal based power station are required very large space, its initial cost is high and create serious environmental threat. Renewable energy is not yet developed and its efficiency is very poor. Though there are many problems and threats but Nuclear Power Plant can be a permanent solution for Bangladesh. Bangladesh government is now going for nuclear power plant and recently they have taken a project called Rooppur Nuclear Power Plant Project (RNPP) which is already approved in the cabinet meeting. The purpose of this paper is to study the feasibility of RNPP.展开更多
Thyroid cancer incidence has risen steadily in the US for several decades. While any cause of this trend has yet to be clearly identified, most analyses have concluded that there are factors other than improved detect...Thyroid cancer incidence has risen steadily in the US for several decades. While any cause of this trend has yet to be clearly identified, most analyses have concluded that there are factors other than improved detection accounting for the increase. Since exposure to radioactive iodine is the only acknowledged root cause of thyroid cancer, a review of temporal trends in incidence since the late 1970s near the Indian Point nuclear power plant, just 23 miles from the New York City border, was conducted. Rates in the four counties closest to Indian Point, where virtually the entire population resides within 20 miles of the plant, were compared with national trends in the US. The relative ratio in the local area was 0.778 in the period 1976-1981, or 22.2 percent lower than the national rate. This ratio increased steadily, to 1.579 (57.9 percent greater than the US) by the period 2000-2004, which slightly declined to 1.515 (51.5 percent greater) in the latest period available (2010-2014). Significant increases occurred for both males and females, and in each of the four counties. Annual new cases diagnosed among residents of the four counties increased from 51 to 412 between 1976-1981 and 2010-2014. Because the two large reactors at Indian Point began operations in 1973 and 1976, and exposures to radioiodine isotopes can manifest as cancer from five years to several decades after exposure, iodine emissions from Indian Point emissions should be considered as a potential factor in these trends. More studies near Indian Point and other nuclear installations should be conducted to further explore this potential association.展开更多
The Salem/Hope Creek nuclear plant in southern New Jersey is one of just four U.S. plants with three large reactors (all others consist of one or two). These reactors started operations in 1976, 1980, and 1986 and rou...The Salem/Hope Creek nuclear plant in southern New Jersey is one of just four U.S. plants with three large reactors (all others consist of one or two). These reactors started operations in 1976, 1980, and 1986 and routinely released toxic radioactive gases and particles into the environment. Only a single study has been performed by federal officials on cancer near nuclear plants—a study now 30 years old. A review of official mortality data using four-year periods shows the Salem County cancer death rate was consistently just below that of other New Jersey counties up to the mid-1980s. However, from 1983-1986 to 2015-2017, the county rate soared from -5.4% below the rest of the state to +32.6% above. The county/state mortality ratio for all causes also increased rapidly in these periods, from +0.6% above to +28.4% above the state. Salem now has the highest cancer death rate, and the 2nd highest total death rate of any New Jersey county. Had the 1983-1986 county-state ratios not changed in the following 31 years, 3493 fewer deaths (1018 of them from cancer) would have occurred among Salem County residents. The lack of any apparent etiologies that could have caused such a dramatic and unexpected change, plus the fact that the Salem/Hope Creek reactors are aging, corroding, and more prone to leaking radionuclides, emphasizes the immediate need for more studies of this type, and the inclusion of local health as a crucial factor in public decisions on the plant’s future.展开更多
This paper aims to study the architectural design and components of Nuclear Power Plants (NPPs). It is also focusing on the simulation system. Its main objective is to set general guidelines for architects. They sho...This paper aims to study the architectural design and components of Nuclear Power Plants (NPPs). It is also focusing on the simulation system. Its main objective is to set general guidelines for architects. They should be aware of the basics of nuclear facilities designs and components. A traditional nuclear power plant consists of a nuclear reactor, a control building, a turbines building, cooling towers, service buildings (an office building & a medical research center) and a nuclear & radiation waste storage building. Bushehr nuclear power plant in Iran and Angra nuclear power plant in Brazil have been chosen as examples. Furthermore, this paper presents design analyses for Bushehr nuclear power plant and Angra nuclear power plant that include design theory (linear design and radial design) and positive & negative aspects of these designs. At the end of this paper, results and recommendations on the architectural and urban aspects of nuclear power plants are revealed.展开更多
Reactor pressure vessel (RPV), the only key component that can not be replaced in nuclear power plants (NPPs), is the main barrier against the radioactive leakage. The lifetime of NPPs is dependent heavily on the life...Reactor pressure vessel (RPV), the only key component that can not be replaced in nuclear power plants (NPPs), is the main barrier against the radioactive leakage. The lifetime of NPPs is dependent heavily on the life of RPV, and thus, the aging and life research on a RPV is a key factor in determining the life extension of NPPs. The purpose of this paper is to introduce an aging and life management system for an operating RPV which can be used as a reference of the lifetime extension. In order to realize the objective, an aging and life management system was developed. It is an comprehensive knowledge management system that integrates decentralized information and serves as a valuable data center. Based on the storage and management of RPV state information and operation data, this system provides real-time monitoring of important operating parameters, evaluation of irradiation embrittlement, and RPV aging assessment. Therefore, it is anticipated that the developed system can be used as an efficient tool for aging and life estimation of RPV.展开更多
This paper presents the sequence of activities to improve the thermal hydraulic analysis of the IEA-R1 research reactor to operate in safe conditions after power upgrade from 2 to 5 MW and core size reduction from 30 ...This paper presents the sequence of activities to improve the thermal hydraulic analysis of the IEA-R1 research reactor to operate in safe conditions after power upgrade from 2 to 5 MW and core size reduction from 30 to 24 fuel assemblies. A realistic analysis needs the knowledge of the actual operation conditions (heat flow, flow rates) beyond the geometric data and the uncertainties associated with manufacturing and measures. A dummy fuel assembly was designed and constructed to measure the actual flow rate through the core fuel assemblies and its pressure drop. First results showed that the flow distribution over the core is nearly uniform. Nevertheless, the values are below than the calculated ones and the core bypass flow rate is greater than those estimated previously. Based on this, several activities were performed to identify and reduce the bypass flow, such as reduction of the flow rate through the sample irradiators, closing some unnecessary secondary holes on the matrix plate, improvement in the primary flow rate system and better fit of the core components on the matrix plate. A sub-aquatic visual system was used as an important tool to detect some bypass flow path. After these modifications, the fuel assemblies flow rate increased about 13%. Additional tests using the dummy fuel assembly were carried out to measure the internal flow distribution among the rectangular channels. The results showed that the flow rate through the outer channels is 10% - 15% lower than the internal ones. The flow rate in the channel formed between two adjacent fuel assemblies is an estimated parameter and it is difficult to measure because this is an open channel. A new thermal hydraulic analysis of the outermost plates of the fuel assemblies takes into account all this information. Then, a fuel design modification was proposed with the reduction of 50% in the uranium quantity in the outermost fuel plates. In order to avoid the oxidation of the outermost plates by high temperature, low flow rate, a reduction of 50% in the uranium density in the same ones was shown to be adequate to solve the problem.展开更多
One of the postponed problems of nuclear power (NP) is the problem of the management of long-lived radioactive waste (RAW), and, first of all, with minor actinides (MA), of which americium-241 is the most difficult. T...One of the postponed problems of nuclear power (NP) is the problem of the management of long-lived radioactive waste (RAW), and, first of all, with minor actinides (MA), of which americium-241 is the most difficult. The aim of this work is to study the efficiency of americium transmutation in a fast reactor with a heavy liquid metal coolant lead-bismuth eutectic alloy. The article presents the results of calculations of the transmutation of americium in the SVBR-100 reactor using standard uranium oxide fuel with the addition of americium-241. The obtained values of the rate of transmutation of americium are compared with similar values for the SVBR-100 reactors on MOX-fuel and in the BN-800 reactor.展开更多
The WRNM(wide range neutron monitoring)is a newly developed neutron monitoring channel which was initially conceived as a means to meet Regulatory Guide 1.97 requirements for post-accident neutron monitoring.The scope...The WRNM(wide range neutron monitoring)is a newly developed neutron monitoring channel which was initially conceived as a means to meet Regulatory Guide 1.97 requirements for post-accident neutron monitoring.The scope was expanded to include the startup monitoring function with the aim of replacing both the source and IRMs(intermediate range monitors)in BWRs(boiling water reactors).The WRNMs,consisting of a newly designed fixed incore regenerative sensor and new electronics,which include both counting and MSV(mean square voltage)channels,have been tested in several reactors and its capabilities have been confirmed.The channel will cover the neutron flux range from 103 nv to 1.5×103 nv;it has greater than 1 decade overlap between the counting and MSV channels.Because of the regenerative fissile coating the sensor,even though fixed incore,has a life of approximately 6.0 full power years in a 51 kW/L BWR and similar situation has been proposed for newly designed small modular reactor such as BWRX-300 of General Electric Hitachi reactor.展开更多
With rapid development of nuclear power in China, in view of reactor type selection, this paper analyzes the current situation that faces nuclear power industry, the technical characteristics of optional reactors and ...With rapid development of nuclear power in China, in view of reactor type selection, this paper analyzes the current situation that faces nuclear power industry, the technical characteristics of optional reactors and the tendency of nuclear power technology development in the future. The proposals put forward in this paper include choosing and introducing GW-class advanced PWR as main reactors, carrying out self-supporting projects and technical transfer negotiations, in addition, promoting the design of the advanced generation-Ⅱ PWR and initiating small-scaled construction. The ultimate target is to catch up with the world advanced level by means of technical upgrading and recreation based on technology importation and assimilation.展开更多
New design solutions have been proposed for a BRS-GPG type reactor circuit, which are different from transport and stationary low and medium-powered reactor installations cooled with heavy liquid-metal coolants, and w...New design solutions have been proposed for a BRS-GPG type reactor circuit, which are different from transport and stationary low and medium-powered reactor installations cooled with heavy liquid-metal coolants, and which correspond to the evolutionary development of such installations. While developing these solutions, the available experience in creating and operating So</span><span>viet pilot and commercial power plants cooled with lead-bismuth coolants</span><span> was used, including investigations, primarily experimental ones, carried out by team of authors in justification of a capacity range (50</span></span><span> </span><span>-</span><span> </span><span>250 MW) of low and medium-powered reactor plants with horizontal steam generators (BRS-</span><span> </span><span>GPG) proposed and elaborated at the NNSTU.展开更多
Today, the most urgent problem of the existing and future nuclear power industry is to ensure the nuclear and environmental safety of the operation of nuclear power reactor units (NPPs) and nuclear power plants (NPPs)...Today, the most urgent problem of the existing and future nuclear power industry is to ensure the nuclear and environmental safety of the operation of nuclear power reactor units (NPPs) and nuclear power plants (NPPs). It is solved thanks to the application of deeply echeloned protection and an anti-accident complex of methods and means for effective control of the operation of active reactor zones (AZR). However, the danger of existing NPPs in the world from time to time manifests itself in the form of severe post-project accidents and catastrophes with the release into the environment of a significant amount of radioactive materials dangerous for all living things. The results of the analysis show that the unconditional fulfillment of the main requirements of nuclear environmental safety and biocompatibility is possible only in the so-called wave nuclear reactor of the G-V generation, which, unlike reactors of the previous generations III, II+ and IV, does not require supercritical loading of the core with nuclear fuel. In the active zone of this reactor, nuclear-physical processes governed by physical law are implemented, which exclude the operator’s participation in regulating the reactivity of the reactor’s active zone, which makes it the reactor with the highest level of nuclear and environmental safety today, which is based on the principles of so-called internal safety, free from the human factor. The possibility of burning nuclear fuel based on U238 and Th232 in it expands the reserves of energetic nuclear fuel almost to inexhaustibility. The technology of nuclear reactors of the G5 generation through the secondary use of spent irradiated nuclear fuel (SNF) for the production of energy and energy raw materials with simultaneous burning of it to an environmentally safe state is able to quickly reduce the available stocks and further production of dangerous SNF, guarantee the nuclear and environmental safety of NPPs with reactors G5 and to technologically make nuclear post-project accidents and disasters impossible at the level of physical law with the complete elimination of the human factor.展开更多
文摘Good practices of maintenance optimization in nuclear power field need to be effectively consolidated and inherited,and maintenance optimization can provide technology support to create a long-term reliable and economic operation for nuclear power plants( NPPs) especially for a large number of nuclear powers under construction. Based on the development and application of maintenance template in developed countries,and combining with reliability-centered maintenance( RCM) analysis results and maintenance experience data over the past ten years in domestic NPPs, the development process of maintenance template was presented for Chinese pressurized water reactor( PWR) NPP,and the application of maintenance template to maintenance program development and maintenance optimization combined with cases were demonstrated. A shortcut was provided for improving the efficiency of maintenance optimization in domestic PWR NPP,and help to realize a safe,reliable,and economic operation for domestic NPPs.
文摘The digital reactor protection system(RPS)is one of the most important digital instrumentation and control(I&C)systems utilized in nuclear power plants(NPPs).It ensures a safe reactor trip when the safety-related parameters violate the operational limits and conditions of the reactor.Achieving high reliability and availability of digital RPS is essential to maintaining a high degree of reactor safety and cost savings.The main objective of this study is to develop a general methodology for improving the reliability of the RPS in NPP,based on a Bayesian Belief Network(BBN)model.The structure of BBN models is based on the incorporation of failure probability and downtime of the RPS I&C components.Various architectures with dual-state nodes for the I&C components were developed for reliability-sensitive analysis and availability optimization of the RPS and to demonstrate the effect of I&C components on the failure of the entire system.A reliability framework clarified as a reliability block diagram transformed into a BBN representation was constructed for each architecture to identify which one will fit the required reliability.The results showed that the highest availability obtained using the proposed method was 0.9999998.There are 120 experiments using two common component importance measures that are applied to define the impact of I&C modules,which revealed that some modules are more risky than others and have a larger effect on the failure of the digital RPS.
文摘This study aims to thoroughly investigate the axial power peaking factors (PPF) within the low-enriched uranium (LEU) core of the Ghana Research Reactor-1 (GHARR-1). This study uses advanced simulation tools, like the MCNPX code for analysing neutron behavior and the PARET/ANL code for understanding power variations, to get a clearer picture of the reactor’s performance. The analysis covers the initial six years of GHARR-1’s operation and includes projections for its whole 60-year lifespan. We closely observed the patterns of both the highest and average PPFs at 21 axial nodes, with measurements taken every ten years. The findings of this study reveal important patterns in power distribution within the core, which are essential for improving the safety regulations and fuel management techniques of the reactor. We provide a meticulous approach, extensive data, and an analysis of the findings, highlighting the significance of continuous monitoring and analysis for proactive management of nuclear reactors. The findings of this study not only enhance our comprehension of nuclear reactor safety but also carry significant ramifications for sustainable energy progress in Ghana and the wider global context. Nuclear engineering is essential in tackling global concerns, such as the demand for clean and dependable energy sources. Research on optimising nuclear reactors, particularly in terms of safety and efficiency, is crucial for the ongoing advancement and acceptance of nuclear energy.
文摘It is very important to reduce the construction duration of the Reactor Containment Building (RCB) when considering the more than 50 months on average from concrete placement to completion. Through a case study, this study performs a pre-study for the reduction of construction duration in nuclear power plant project based on construction process of the RCB. The actual data of the case study have been collected and analyze the process and the external wall drawings of the RCB with construction practitioners. As a result of that, it is necessary to modularize the external wall form for equipment hatch and to extend the height of one layer of the external wall form to reduce the construction duration of RCB. The results of this study will be utilized to reduce construction duration of the nuclear power plant.
文摘Recently, plant construction throughout the world, including nuclear power plant construction, has grown significantly. The scale of Korea’s nuclear power plant construction in particular, has increased gradually since it won a contract for a nuclear power plant construction project in the United Arab Emirates in 2009. However, time and monetary resources have been lost in some nuclear power plant construction sites due to lack of risk management ability. The need to prevent losses at nuclear power plant construction sites has become more urgent because it demands professional skills and large-scale resources. Therefore, in this study, the Analytic Hierarchy Process (AHP) and Fuzzy Analytic Hierarchy Process (FAHP) were applied in order to make comparisons between decision-making methods, to assess the potential risks at nuclear power plant construction sites. To suggest the appropriate choice between two decision-making methods, a survey was carried out. From the results, the importance and the priority of 24 risk factors, classified by process, cost, safety, and quality, were analyzed. The FAHP was identified as a suitable method for risk assessment of nuclear power plant construction, compared with risk assessment using the AHP. These risk factors will be able to serve as baseline data for risk management in nuclear power plant construction projects.
文摘Qinshan Phase Ⅲ(PHWR)Nuclear Power Plant,the first commercial heavy water reactor nuclear power plant in China,was the biggest trade project performed between the governments of China and Canada.As the owner,the Third Qinshan Nuclear Power Company(TQNPC)persisted in independent innovation management during the project construction,commissioning and self-dependent operation,efficiently realizing the three controls of the project,i.e.quality control,schedule control and investment control,and persisted in technical improvement on the basis of digestion and absorption of CANDU-6 technology to improve the unit safety and reliability.The project construction practice has helped China's nuclear power project management to becomeprogrammed,computerized,standardized and internationalized management from the existing basis.After completion of the project,with unit safe and steady operation as the prerequisite,TQNPC performed several technical modifications and innovations to continuously improve the unit performance.In the area of staff development,TQNPC paid much attention to cultivation of corporate culture,strengthed staff training and built up a good circulating mechanism with staff training and project construction promoting each other.Further to "Zero Breakthrough" and a new step forward of locolization successfully realized in Qinshan Nuclear Power Plant and Nuclear Power Qinshan Joint Venture Company,the improvement and developemnt of nuclear power project management level in Qinshan Phase Ⅲ(PHWR)Nuclear Power Plant provided reference for promotion of nuclear power development in China and standardized management of introducing large imported project.
文摘New research developments suggest that nuclear reactors using fusion may enter the market sooner than imagined even for mobile applications, like merchant ship propulsion and remote power generation. This article aims at pointing such developments and how they could affect nuclear fusion. The method is enumerating the main nuclear reactors concepts, identifying new technological or theoretical developments useful to nuclear field, and analysing how new recombination could affect feasibility of nuclear fusion. New technologies or experimental results do not always work the way people imagine, being better or worse for intended effects or even bringing completely unforeseen effects. Results point the following designs could be successful, in descending order of potential: aneutronic nuclear reactions using lattice confinement, aneutronic nuclear reactions using inertial along magnetic confinement, hybrid fission-lattice confinement fusion, and fission reactions.
文摘Bangladesh is densely populated country with a population of 16 core and small area about 1, 47,570 Square-Kilometer. Among these large population only a few section are taking the blessings of power. But now at a stage government can’t give the power even to that special section. Because day by day population is increasing and also power demands is also increasing. Governments are trying to meet up the power crisis in Bangladesh by taking various steps. Like small (10-20MW) power plants, IPP, Rental power plant etc. But these are not a permanent solution. More over these rental and IPP are mainly oil and gas based, which are very costly and not very efficient. Besides these government are going with coal based power station and small scale renewable energy. But coal based power station are required very large space, its initial cost is high and create serious environmental threat. Renewable energy is not yet developed and its efficiency is very poor. Though there are many problems and threats but Nuclear Power Plant can be a permanent solution for Bangladesh. Bangladesh government is now going for nuclear power plant and recently they have taken a project called Rooppur Nuclear Power Plant Project (RNPP) which is already approved in the cabinet meeting. The purpose of this paper is to study the feasibility of RNPP.
文摘Thyroid cancer incidence has risen steadily in the US for several decades. While any cause of this trend has yet to be clearly identified, most analyses have concluded that there are factors other than improved detection accounting for the increase. Since exposure to radioactive iodine is the only acknowledged root cause of thyroid cancer, a review of temporal trends in incidence since the late 1970s near the Indian Point nuclear power plant, just 23 miles from the New York City border, was conducted. Rates in the four counties closest to Indian Point, where virtually the entire population resides within 20 miles of the plant, were compared with national trends in the US. The relative ratio in the local area was 0.778 in the period 1976-1981, or 22.2 percent lower than the national rate. This ratio increased steadily, to 1.579 (57.9 percent greater than the US) by the period 2000-2004, which slightly declined to 1.515 (51.5 percent greater) in the latest period available (2010-2014). Significant increases occurred for both males and females, and in each of the four counties. Annual new cases diagnosed among residents of the four counties increased from 51 to 412 between 1976-1981 and 2010-2014. Because the two large reactors at Indian Point began operations in 1973 and 1976, and exposures to radioiodine isotopes can manifest as cancer from five years to several decades after exposure, iodine emissions from Indian Point emissions should be considered as a potential factor in these trends. More studies near Indian Point and other nuclear installations should be conducted to further explore this potential association.
文摘The Salem/Hope Creek nuclear plant in southern New Jersey is one of just four U.S. plants with three large reactors (all others consist of one or two). These reactors started operations in 1976, 1980, and 1986 and routinely released toxic radioactive gases and particles into the environment. Only a single study has been performed by federal officials on cancer near nuclear plants—a study now 30 years old. A review of official mortality data using four-year periods shows the Salem County cancer death rate was consistently just below that of other New Jersey counties up to the mid-1980s. However, from 1983-1986 to 2015-2017, the county rate soared from -5.4% below the rest of the state to +32.6% above. The county/state mortality ratio for all causes also increased rapidly in these periods, from +0.6% above to +28.4% above the state. Salem now has the highest cancer death rate, and the 2nd highest total death rate of any New Jersey county. Had the 1983-1986 county-state ratios not changed in the following 31 years, 3493 fewer deaths (1018 of them from cancer) would have occurred among Salem County residents. The lack of any apparent etiologies that could have caused such a dramatic and unexpected change, plus the fact that the Salem/Hope Creek reactors are aging, corroding, and more prone to leaking radionuclides, emphasizes the immediate need for more studies of this type, and the inclusion of local health as a crucial factor in public decisions on the plant’s future.
文摘This paper aims to study the architectural design and components of Nuclear Power Plants (NPPs). It is also focusing on the simulation system. Its main objective is to set general guidelines for architects. They should be aware of the basics of nuclear facilities designs and components. A traditional nuclear power plant consists of a nuclear reactor, a control building, a turbines building, cooling towers, service buildings (an office building & a medical research center) and a nuclear & radiation waste storage building. Bushehr nuclear power plant in Iran and Angra nuclear power plant in Brazil have been chosen as examples. Furthermore, this paper presents design analyses for Bushehr nuclear power plant and Angra nuclear power plant that include design theory (linear design and radial design) and positive & negative aspects of these designs. At the end of this paper, results and recommendations on the architectural and urban aspects of nuclear power plants are revealed.
文摘Reactor pressure vessel (RPV), the only key component that can not be replaced in nuclear power plants (NPPs), is the main barrier against the radioactive leakage. The lifetime of NPPs is dependent heavily on the life of RPV, and thus, the aging and life research on a RPV is a key factor in determining the life extension of NPPs. The purpose of this paper is to introduce an aging and life management system for an operating RPV which can be used as a reference of the lifetime extension. In order to realize the objective, an aging and life management system was developed. It is an comprehensive knowledge management system that integrates decentralized information and serves as a valuable data center. Based on the storage and management of RPV state information and operation data, this system provides real-time monitoring of important operating parameters, evaluation of irradiation embrittlement, and RPV aging assessment. Therefore, it is anticipated that the developed system can be used as an efficient tool for aging and life estimation of RPV.
文摘This paper presents the sequence of activities to improve the thermal hydraulic analysis of the IEA-R1 research reactor to operate in safe conditions after power upgrade from 2 to 5 MW and core size reduction from 30 to 24 fuel assemblies. A realistic analysis needs the knowledge of the actual operation conditions (heat flow, flow rates) beyond the geometric data and the uncertainties associated with manufacturing and measures. A dummy fuel assembly was designed and constructed to measure the actual flow rate through the core fuel assemblies and its pressure drop. First results showed that the flow distribution over the core is nearly uniform. Nevertheless, the values are below than the calculated ones and the core bypass flow rate is greater than those estimated previously. Based on this, several activities were performed to identify and reduce the bypass flow, such as reduction of the flow rate through the sample irradiators, closing some unnecessary secondary holes on the matrix plate, improvement in the primary flow rate system and better fit of the core components on the matrix plate. A sub-aquatic visual system was used as an important tool to detect some bypass flow path. After these modifications, the fuel assemblies flow rate increased about 13%. Additional tests using the dummy fuel assembly were carried out to measure the internal flow distribution among the rectangular channels. The results showed that the flow rate through the outer channels is 10% - 15% lower than the internal ones. The flow rate in the channel formed between two adjacent fuel assemblies is an estimated parameter and it is difficult to measure because this is an open channel. A new thermal hydraulic analysis of the outermost plates of the fuel assemblies takes into account all this information. Then, a fuel design modification was proposed with the reduction of 50% in the uranium quantity in the outermost fuel plates. In order to avoid the oxidation of the outermost plates by high temperature, low flow rate, a reduction of 50% in the uranium density in the same ones was shown to be adequate to solve the problem.
文摘One of the postponed problems of nuclear power (NP) is the problem of the management of long-lived radioactive waste (RAW), and, first of all, with minor actinides (MA), of which americium-241 is the most difficult. The aim of this work is to study the efficiency of americium transmutation in a fast reactor with a heavy liquid metal coolant lead-bismuth eutectic alloy. The article presents the results of calculations of the transmutation of americium in the SVBR-100 reactor using standard uranium oxide fuel with the addition of americium-241. The obtained values of the rate of transmutation of americium are compared with similar values for the SVBR-100 reactors on MOX-fuel and in the BN-800 reactor.
文摘The WRNM(wide range neutron monitoring)is a newly developed neutron monitoring channel which was initially conceived as a means to meet Regulatory Guide 1.97 requirements for post-accident neutron monitoring.The scope was expanded to include the startup monitoring function with the aim of replacing both the source and IRMs(intermediate range monitors)in BWRs(boiling water reactors).The WRNMs,consisting of a newly designed fixed incore regenerative sensor and new electronics,which include both counting and MSV(mean square voltage)channels,have been tested in several reactors and its capabilities have been confirmed.The channel will cover the neutron flux range from 103 nv to 1.5×103 nv;it has greater than 1 decade overlap between the counting and MSV channels.Because of the regenerative fissile coating the sensor,even though fixed incore,has a life of approximately 6.0 full power years in a 51 kW/L BWR and similar situation has been proposed for newly designed small modular reactor such as BWRX-300 of General Electric Hitachi reactor.
文摘With rapid development of nuclear power in China, in view of reactor type selection, this paper analyzes the current situation that faces nuclear power industry, the technical characteristics of optional reactors and the tendency of nuclear power technology development in the future. The proposals put forward in this paper include choosing and introducing GW-class advanced PWR as main reactors, carrying out self-supporting projects and technical transfer negotiations, in addition, promoting the design of the advanced generation-Ⅱ PWR and initiating small-scaled construction. The ultimate target is to catch up with the world advanced level by means of technical upgrading and recreation based on technology importation and assimilation.
文摘New design solutions have been proposed for a BRS-GPG type reactor circuit, which are different from transport and stationary low and medium-powered reactor installations cooled with heavy liquid-metal coolants, and which correspond to the evolutionary development of such installations. While developing these solutions, the available experience in creating and operating So</span><span>viet pilot and commercial power plants cooled with lead-bismuth coolants</span><span> was used, including investigations, primarily experimental ones, carried out by team of authors in justification of a capacity range (50</span></span><span> </span><span>-</span><span> </span><span>250 MW) of low and medium-powered reactor plants with horizontal steam generators (BRS-</span><span> </span><span>GPG) proposed and elaborated at the NNSTU.
文摘Today, the most urgent problem of the existing and future nuclear power industry is to ensure the nuclear and environmental safety of the operation of nuclear power reactor units (NPPs) and nuclear power plants (NPPs). It is solved thanks to the application of deeply echeloned protection and an anti-accident complex of methods and means for effective control of the operation of active reactor zones (AZR). However, the danger of existing NPPs in the world from time to time manifests itself in the form of severe post-project accidents and catastrophes with the release into the environment of a significant amount of radioactive materials dangerous for all living things. The results of the analysis show that the unconditional fulfillment of the main requirements of nuclear environmental safety and biocompatibility is possible only in the so-called wave nuclear reactor of the G-V generation, which, unlike reactors of the previous generations III, II+ and IV, does not require supercritical loading of the core with nuclear fuel. In the active zone of this reactor, nuclear-physical processes governed by physical law are implemented, which exclude the operator’s participation in regulating the reactivity of the reactor’s active zone, which makes it the reactor with the highest level of nuclear and environmental safety today, which is based on the principles of so-called internal safety, free from the human factor. The possibility of burning nuclear fuel based on U238 and Th232 in it expands the reserves of energetic nuclear fuel almost to inexhaustibility. The technology of nuclear reactors of the G5 generation through the secondary use of spent irradiated nuclear fuel (SNF) for the production of energy and energy raw materials with simultaneous burning of it to an environmentally safe state is able to quickly reduce the available stocks and further production of dangerous SNF, guarantee the nuclear and environmental safety of NPPs with reactors G5 and to technologically make nuclear post-project accidents and disasters impossible at the level of physical law with the complete elimination of the human factor.