期刊文献+
共找到6,766篇文章
< 1 2 250 >
每页显示 20 50 100
Numerical study on local scour characteristics around submarine pipelines in the Yellow River Delta silty sandy soil under waves and currents 被引量:1
1
作者 Peng Yu Ruigeng Hu +4 位作者 Jike Zhang Qi Yang Jieru Zhao Lei Cao Chenghao Zhu 《Deep Underground Science and Engineering》 2024年第2期182-196,共15页
Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil aroun... Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil around submarine pipelines is prone to local scour,severely affecting their operational safety.With the Yellow River Delta as the research area and based on the renormalized group(RNG)k-εturbulence model and Stokes fifth-order wave theory,this study solves the Navier-Stokes(N-S)equation using the finite difference method.The volume of fluid(VOF)method is used to describe the fluid-free surface,and a threedimensional numerical model of currents and waves-submarine pipeline-silty sandy seabed is established.The rationality of the numerical model is verified using a self-built waveflow flume.On this basis,in this study,the local scour development and characteristics of submarine pipelines in the Yellow River Delta silty sandy seabed in the prototype environment are explored and the influence of the presence of pipelines on hydrodynamic features such as surrounding flow field,shear stress,and turbulence intensity is analyzed.The results indicate that(1)local scour around submarine pipelines can be divided into three stages:rapid scour,slow scour,and stable scour.The maximum scour depth occurs directly below the pipeline,and the shape of the scour pits is asymmetric.(2)As the water depth decreases and the pipeline suspension height increases,the scour becomes more intense.(3)When currents go through a pipeline,a clear stagnation point is formed in front of the pipeline,and the flow velocity is positively correlated with the depth of scour.This study can provide a valuable reference for the protection of submarine pipelines in this area. 展开更多
关键词 local scour numerical simulation submarine pipelines Yellow River Delta
下载PDF
Physical and mechanical properties and microstructures of submarine soils in the Yellow Sea 被引量:1
2
作者 Zhuangcai Tian Yihua Chang +6 位作者 Sichao Chen Gengchen Wang Yanhong Hu Chuan Guo Lei Jia Lei Song Jianhua Yue 《Deep Underground Science and Engineering》 2024年第2期197-206,共10页
In recent years,the exploration of seabed has been intensified,but the submarine soils of silt and sand in the Yellow Sea area have not been well investigated so far.In this study,the physical and mechanical propertie... In recent years,the exploration of seabed has been intensified,but the submarine soils of silt and sand in the Yellow Sea area have not been well investigated so far.In this study,the physical and mechanical properties of silt and sand from the Yellow Sea were measured using a direct shear apparatus and their microstructures were observed using a scanning electron microscope.The test results suggest that the shear strength of silt and sand increases linearly with the increase of normal stress.Based on the direct shear test,the scanning electron microscope was used to observe the section surface of sand.It is observed that the section surface becomes rough,with many“V”‐shaped cracks.Many particles appear on the surface of the silt structure and tend to be disintegrated.The X‐ray diffraction experiment reveals that the sand and silt have different compositions.The shear strength of sand is slightly greater than that of silt under high stress,which is related to the shape of soil particles and the mineral composition.These results can be a reference for further study of other soils in the Yellow Sea;meanwhile,they can serve as soil parameters for the stability and durability analyses of offshore infrastructure construction. 展开更多
关键词 direct shear test MICROSCOPE physical properties submarine soil Yellow Sea
下载PDF
The Middle Miocene lobe-shaped and band-shaped submarine fans in the Lingshui Sag,Qiongdongnan Basin:source-to-sink system,genesis and implication
3
作者 Xingzong Yao Congjun Feng +2 位作者 Hongjun Qu Min Zhang Daming Li 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第4期61-79,共19页
Deepwater oil and gas exploration is the key to sustainable breakthroughs in petroleum exploration worldwide.The Central Canyon gas field has confirmed the Lingshui Sag is a hydrocarbon-generating sag,and the deepwate... Deepwater oil and gas exploration is the key to sustainable breakthroughs in petroleum exploration worldwide.The Central Canyon gas field has confirmed the Lingshui Sag is a hydrocarbon-generating sag,and the deepwater reservoirs in the Lingshui Sag still have more fabulous oil and gas exploration potential.Based on drilling data and three-dimensional(3D)seismic data,this paper uses seismic facies analysis,seismic attribute analysis,and coherence slice analysis to identify the types of submarine fans(lobe-shaped and band-shaped submarine fans)that developed in the Lingshui Sag during the Middle Miocene,clarify the source-to-sink system of the submarine fans and discuss the genesis mechanism of the submarine fans.The results show that:(1)the deepwater source-to-sink system of the Lingshui Sag in the Middle Miocene mainly consisted of a“delta(sediment supply)-submarine canyon(sediment transport channel)-submarine fan(deepwater sediment sink)”association;(2)the main factor controlling the formation of the submarine fans developed in the Lingshui Sag was on the relative sea level decline;and(3)the bottom current reworked the lobe-shaped submarine fan that developed in the northern Lingshui Sag and formed the band-shaped submarine fan with a greater sand thickness.This paper aims to provide practical geological knowledge for subsequent petroleum exploration and development in the deepwater area of the Qiongdongnan Basin through a detailed analysis of the Middle Miocene submarine fan sedimentary system developed in the Lingshui Sag. 展开更多
关键词 submarine fan source-to-sink system genesis mechanism Middle Miocene Lingshui Sag
下载PDF
Sedimentary architecture of submarine channel-lobe systems under different seafloor topography:Insights from the Rovuma Basin offshore East Africa
4
作者 Mei Chen Sheng-He Wu +6 位作者 Rui-Feng Wang Jia-Jia Zhang Peng-Fei Xie Min Wang Xiao-Feng Wang Ji-Tao Yu Qi-Cong Xiong 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期125-142,共18页
Seafloor topography plays an important role in the evolution of submarine lobes.However,it is still not so clear how the shape of slope affects the three-dimensional(3-D)architecture of submarine lobes.In this study,w... Seafloor topography plays an important role in the evolution of submarine lobes.However,it is still not so clear how the shape of slope affects the three-dimensional(3-D)architecture of submarine lobes.In this study,we analyze the effect of topography factors on different hierarchical lobe architectures that formed during Pliocene to Quaternary in the Rovuma Basin offshore East Africa.We characterize the shape,size and growth pattern of different hierarchical lobe architectures using 3-D seismic data.We find that the relief of the topographic slope determines the location of preferential deposition of lobe complexes and single lobes.When the topography is irregular and presents topographic lows,lobe complexes first infill these depressions.Single lobes are deposited preferentially at positions with higher longitudinal(i.e.across-slope)slope gradients.As the longitudinal slope becomes higher,the aspect ratio of the single lobes increases.Lateral(i.e.along-slope)topography does not seem to have a strong influence on the shape of single lobe,but it seems to affect the overlap of single lobes.When the lateral slope gradient is relatively high,the single lobes tend to have a larger overlap surface.Furthermore,as the average of lateral slope and longitudinal slope gets greater,the width/thickness ratio of the single lobe is smaller,i.e.sediments tend to accumulate vertically.The results demonstrate that the shape of slopes more comprehensively influences the 3-D architecture of lobes in natural deep-sea systems than previously other lobe deposits and analogue experiments,which helps us better understand the development and evolution of the distal parts of turbidite systems. 展开更多
关键词 submarine fan Seafloor topography Sedimentary architecture Slope system SW Indian ocean
下载PDF
Bending Failure Mode and Prediction Method of the Compressive Strain Capacity of A Submarine Pipeline with Dent Defects
5
作者 HOU Fu-heng JIA Lu-sheng +3 位作者 CHEN Yan-fei ZHANG Qi ZHONG Rong-feng WANG Chun-sha 《China Ocean Engineering》 SCIE EI CSCD 2024年第4期636-647,共12页
A dent is a common type of defects for submarine pipeline.For submarine pipelines,high hydrostatic pressure and internal pressure are the main loads.Once pipelines bend due to complex subsea conditions,the compression... A dent is a common type of defects for submarine pipeline.For submarine pipelines,high hydrostatic pressure and internal pressure are the main loads.Once pipelines bend due to complex subsea conditions,the compression strain capacity may be exceeded.Research into the local buckling failure and accurate prediction of the compressive strain capacity are important.A finite element model of a pipeline with a dent is established.Local buckling failure under a bending moment is investigated,and the compressive strain capacity is calculated.The effects of different parameters on pipeline local buckling are analyzed.The results show that the dent depth,external pressure and internal pressure lead to different local buckling failure modes of the pipeline.A higher internal pressure indicates a larger compressive strain capacity,and the opposite is true for external pressure.When the ratio of external pressure to collapse pressure of intact pipeline is greater than 0.1,the deeper the dent,the greater the compressive strain capacity of the pipeline.And as the ratio is less than 0.1,the opposite is true.On the basis of these results,a regression equation for predicting the compressive strain capacity of a dented submarine pipeline is proposed,which can be referred to during the integrity assessment of a submarine pipeline. 展开更多
关键词 submarine pipeline dent defect bending load local buckling compressive strain capacity
下载PDF
A Havelock Source Panel Method for Near-surface Submarines 被引量:3
6
作者 Tim Gourlay Edward Dawson 《Journal of Marine Science and Application》 CSCD 2015年第3期215-224,共10页
A panel method is described for calculating potential flow around near-surface submarines. The method uses Havelock sources which automatically satisfy the linearized free-surface boundary condition. Outputs from the ... A panel method is described for calculating potential flow around near-surface submarines. The method uses Havelock sources which automatically satisfy the linearized free-surface boundary condition. Outputs from the method include pressure field, pressure drag, wave resistance, vertical force, trim moment and wave pattern. Comparisons are made with model tests for wave resistance of Series 58 and DARPA SUBOFF hulls, as well as with wave resistance, lift force and trim moment of three length-to-diameter variants of the DSTO Joubert submarine hull. It is found that the Havelock source panel method is capable of determining with reasonable accuracy wave resistance, vertical force and trim moment for submarine hulls. Further experimental data are required in order to assess the accuracy of the method for pressure field and wave pattern prediction. The method is implemented in the computer code“HullWave”and offers potential advantages over RANS-CFD codes in terms of speed, simplicity and robustness. 展开更多
关键词 near-surface submarine Havelock source panel method submarine hull wave resistance
下载PDF
Circadian misalignment on submarines and other non-24-h environments – from research to application 被引量:2
7
作者 Jin-Hu Guo Xiao-Hong Ma +4 位作者 Huan Ma Yin Zhang Zhi-Qiang Tian Xin Wang Yong-Cong Shao 《Military Medical Research》 SCIE CSCD 2021年第1期90-102,共13页
Circadian clocks have important physiological and behavioral functions in humans and other organisms, which enable organisms to anticipate and respond to periodic environmental changes. Disturbances in circadian rhyth... Circadian clocks have important physiological and behavioral functions in humans and other organisms, which enable organisms to anticipate and respond to periodic environmental changes. Disturbances in circadian rhythms impair sleep, metabolism, and behavior. People with jet lag, night workers and shift workers are vulnerable to circadian misalignment. In addition, non-24-h cycles influence circadian rhythms and cause misalignment and disorders in different species, since these periods are beyond the entrainment ranges. In certain special conditions, e.g., on submarines and commercial ships, non-24-h watch schedules are often employed, which have also been demonstrated to be deleterious to circadian rhythms. Personnel working under such conditions suffer from circadian misalignment with their on-watch hours, leading to increased health risks and decreased cognitive performance. In this review, we summarize the research progress and knowledge concerning circadian rhythms on submarines and other environments in which non-24-h watch schedules are employed. 展开更多
关键词 Circadian rhythm Circadian clock Entrainment range Metabolism ALERTNESS submarinE
下载PDF
Experimental and numerical analysis on suitability of S-Glass-Carbon fiber reinforced polymer composites for submarine hull 被引量:1
8
作者 Elango Natarajan Lídio Inacio Freitas +3 位作者 M.S.Santhosh Kalaimani Markandan Ammar Abdulaziz Majeed Al-Talib C.S.Hassan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第1期1-11,共11页
Suitability of S-Glass/carbon fiber reinforced polymer composite for submarine hull subjected to hydrostatic pressure has been investigated in the present study.Metallic materials have raised concerns owing to their d... Suitability of S-Glass/carbon fiber reinforced polymer composite for submarine hull subjected to hydrostatic pressure has been investigated in the present study.Metallic materials have raised concerns owing to their decomposition due to low resistance towards salinity and hence polymer composites have been explored to showcase their mechanical stability to withstand transverse and impact loads.To this end,the mechanical properties of S-Glass/carbon fiber reinforced polymer composite were experimentally investigated and higher specific strength and stiffness of the composite in comparison to many metallic materials used for submarine hull were reported.The obtained experimental values were used for the static and dynamic crash analysis of the bow,stern and foil through Finite Element Analysis(FEA);where depth of travel was varied from sea surface level of 0-7000 m.Submarine assembly was later developed with the optimum shape and thickness of each part.We also report the nonlinear crash analysis upon impact at velocity ranging from 3 to 21 m/s.Besides,kinetic energy,acceleration peak and internal energy in struck submarine revealed that travel depth 1750 m and 3500 m is recommendable,more particularly,crash safety factor of the submarine is found to be within limit when submarine encounters crash at 1750 m. 展开更多
关键词 Crash Impact Design submarinE HULL BOW STERN FOIL
下载PDF
Evaluation of the submarine debris-flow hazard risks to planned subsea pipeline systems: a case study in the Qiongdongnan Basin, South China Sea 被引量:1
9
作者 Mingquan Huang Xuesheng Qian +1 位作者 Jingping Xu Xuecheng Li 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第5期139-153,共15页
The ever-increasing deepwater oil and gas development in the Qiongdongnan Basin,South China Sea has initiated the need to evaluate submarine debris-flow hazard risks to seafloor infrastructures.This paper presents a c... The ever-increasing deepwater oil and gas development in the Qiongdongnan Basin,South China Sea has initiated the need to evaluate submarine debris-flow hazard risks to seafloor infrastructures.This paper presents a case study on evaluating the debris-flow hazard risks to the planned pipeline systems in this region.We used a numerical model to perform simulations to support this quantitative evaluation.First,one relict failure interpreted across the development site was simulated.The back-analysis modeling was used to validate the applicability of the rheological parameters.Then,this model was applied to forecast the runout behaviors of future debris flows originating from the unstable upslope regions considered to be the most critical to the pipeline systems surrounding the Manifolds A and B.The model results showed that the potential debris-flow hazard risks rely on the location of structures and the selection of rheological parameters.For the Manifold B and connected pipeline systems,because of their remote distances away from unstable canyon flanks,the potential debris flows impose few risks.However,the pipeline systems around the Manifold A are exposed to significant hazard risks from future debris flows with selected rheological parameters.These results are beneficial for the design of a more resilient pipeline route in consideration of future debris-flow hazard risks. 展开更多
关键词 submarine debris flow pipeline MANIFOLD hazard evaluation route optimization Qiongdongnan Basin
下载PDF
Submarine volcanism in the southern margin of the South China Sea 被引量:1
10
作者 Chenglong ZHANG Shaohong XIA +1 位作者 Chaoyan FAN Jinghe CAO 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第2期612-629,共18页
Submarine volcanism is widely developed in the South China Sea(SCS).However,the characteristics,distribution,and genesis of submarine volcanoes in the southern margin of the SCS remain obscure.In this study,we analyze... Submarine volcanism is widely developed in the South China Sea(SCS).However,the characteristics,distribution,and genesis of submarine volcanoes in the southern margin of the SCS remain obscure.In this study,we analyzed the characteristics of submarine volcanoes and identified a total of 43 submarine volcanoes in the southern margin of the SCS,based on a newly acquired 310-km seismic reflection profile,along with previous 45 multi-channel seismic(MCS)profiles,petrological results from volcanic rocks sampled by dredging and drilling,nearby ocean bottom seismometer(OBS)wide-angle seismic profiles,and gravity and magnetic data.The study ascertains that most of these volcanoes are located in fault-block belts and graben-horst zones with strong crustal stretching and thinning.These volcanoes exhibit positive high-amplitude external seismic reflections,weak and chaotic internal seismic reflections,and are accompanied by local deformation of the surrounding sedimentary strata.Meanwhile,they have higher positive gravity anomalies and higher magnetic anomalies than the background strata.The petrological dating results show that volcanic ages are primarily in the Pliocene-Pleistocene,with geochemical characteristics indicating dominance of oceanic island basalt(OIB)-type alkali-basalts.Extensional faults have obviously spatial correspondence with post-spreading volcanism,suggesting these faults may provide conduits for submarine volcanism.The high-velocity bodies(HVBs)in the lower crust and magma underplating exist in the southern SCS,which could provide a clue of genesis for submarine volcanism.The inference is that the intensity of post-spreading volcanism in the southern margin might be affected by stretching faults,crustal thinning and magma underplating. 展开更多
关键词 submarine volcanoes MAGMATISM extensional fault Nansha Block South China Sea(SCS).
下载PDF
Using radium isotopes to evaluate the uncertainty of submarine groundwater discharge in the northeast and entirety of Daya Bay 被引量:1
11
作者 Hequan Gu Feng Zhao +6 位作者 Zhixin Ni Meigui Wu Li Zhao Aicui Dang Dongmei Li Minxia Zhang Qin Hu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第8期24-31,共8页
Submarine groundwater discharge(SGD),which can be traced using naturally occurring radium isotopes,has been recognized as a significant nutrient source and land-ocean interaction passage for the coastal waters of the ... Submarine groundwater discharge(SGD),which can be traced using naturally occurring radium isotopes,has been recognized as a significant nutrient source and land-ocean interaction passage for the coastal waters of the Daya Bay,China.However,uncertainties in assessing SGD fluxes must still be discussed in detail.In this study,we attempted to utilize the Monte Carlo method to evaluate the uncertainties of radium-derived SGD flux in the northeast and entirety of the Daya Bay.The results show that the uncertainties of the SGD estimate in the northeast bay are very sensitive to variations in excess radium inventories as well as radium inputs from bottom sediments,while the uncertainties of the SGD estimate for the entire bay are strongly affected by fluctuations in radium inputs from bottom sediments and radium end-members of SGD.This study will help to distinguish the key factors controlling the accuracy of SGD estimates in similar coastal waters. 展开更多
关键词 submarine groundwater discharge(SGD) radium isotopes Monte-Carlo method Daya Bay uncertainty analysis
下载PDF
Cybersecurity for Allied Future Submarines
12
作者 Keith F. Joiner Simon Reay Atkinson +1 位作者 Pete Christensen Elena Sitnikova 《World Journal of Engineering and Technology》 2018年第4期696-712,共17页
Cyber has become a supposedly cheap first-strike weapon of political choice by potential adversaries in a milieu placing insurgency, terrorism, international crime and state-based influences in close un-regulated prox... Cyber has become a supposedly cheap first-strike weapon of political choice by potential adversaries in a milieu placing insurgency, terrorism, international crime and state-based influences in close un-regulated proximity. The merging of electronic and cyber warfare means that not even submarines, however unconnected or firewalled they may be, are immune. The quantum attack surface of submarines is as much in their past, as they are in their designs today and their operations tomorrow: they must survive to be credible and ideally they should even be a contemporary offensive cyber deterrent. Such critical defensive systems require robust security systems engineering and cybersecurity test and evaluation to build and sustain their cyber-resilience. This paper uses Australia’s future submarine program [1]1 to outline key facets needed in a submarine program to achieve cyber resilience, including how to adapt U.S. Department of Defense (DoD) best practices to engineer, test and sustain cyber-resilient submarine systems. Strategies are needed that provision sovereign-owned and operated land-based test sites to design, build, demonstrate and sustain critical submarine systems. This work is most relevant to countries allied to the U.S. and importing submarine capabilities, such as within lesser European powers and also in the Indo-Pacific where both cyber warfare and submarines are proliferating. 展开更多
关键词 Cyber-Resilience FUTURE submarinE Design Land-Based TEST Sites Quantum Attack Surface TEST and Evaluation
下载PDF
Genesis, evolution and reservoir identification of a Neogene submarine channel in the southwestern Qiongdongnan Basin, South China Sea 被引量:1
13
作者 Shuo Chen Donghui Jiang +4 位作者 Renhai Pu Yunwen Guan Xiaochuan Wu Tianyu Ji Chuang Liu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第5期57-78,共22页
A rarely reported middle-late Miocene-Pliocene channel(incised valley fill),the Huaguang Channel(HGC),has been found in the deep-water area of the southwestern Qiongdongnan Basin(QDNB).This channel is almost perpendic... A rarely reported middle-late Miocene-Pliocene channel(incised valley fill),the Huaguang Channel(HGC),has been found in the deep-water area of the southwestern Qiongdongnan Basin(QDNB).This channel is almost perpendicular to the orientation of another well-known,large,and nearly coeval submarine channel in this area.Based on the interpretation of high-resolution 3D seismic data,this study describes and analyzes the stratigraphy,tectonics,sedimentation,morphology,structure and evolution of HGC by means of well-seismic synthetic calibration,one-and two-dimensional forward modeling,attribute interpretation,tectonic interpretation,and gas detection.The HGC is located on the downthrown side of an earlier activated normal fault and grew northwestward along the fault strike.The channel is part of a slope that extends from the western Huaguang Sag to the eastern Beijiao Uplift.The HGC underwent four developmental stages:the(1)incubation(late Sanya Formation,20.4–15.5 Ma),(2)embryonic(Meishan Formation,15.5–10.5 Ma),(3)peak(Huangliu Formation,10.5–5.5 Ma)and(4)decline(Yinggehai Formation,5.5–1.9 Ma)stages.The channel sandstones have a provenance from the southern Yongle Uplift and filled the channel via multistage vertical amalgamation and lateral migration.The channel extended 42.5 km in an approximately straight pattern in the peak stage.At 10.5 Ma,sea level fell relative to its lowest level,and three oblique progradation turbidite sand bodies filled the channel from south to north.A channel sandstone isopach map demonstrated a narrow distribution in the early stages and a fan-shaped distribution in the late stage.The formation and evolution of the HGC were controlled mainly by background tectonics,fault strike,relative sea level change,and mass supply from the Yongle Uplift.The HGC sandstone reservoir is near the Huaguangjiao Sag,where hydrocarbons were generated.Channel-bounding faults and underlying faults link the source rock with the reservoir.A regionally extensive mudstone caprock overlies the channel sandstone.Two traps likely containing gas were recognized in a structural high upstream of the channel from seismic attenuation anomalies.The HGC will likely become an important oil and gas accumulation setting in the QDNB deep-water area. 展开更多
关键词 South China Sea Qiongdongnan Basin submarine channel channel evolution reservoir identification
下载PDF
Study of the Dynamic Characteristics of A Cone-Shaped Recovery System on Submarines for Recovering Autonomous Underwater Vehicle
14
作者 MENG Ling-shuai LIN Yang +1 位作者 GU Hai-tao SU Tsung-Chow 《China Ocean Engineering》 SCIE EI CSCD 2020年第3期387-399,共13页
National navies equip their submarines with Autonomous Underwater Vehicle(AUV)technology.It has become an important component of submarine development in technologically-advanced countries.Employing advanced and relia... National navies equip their submarines with Autonomous Underwater Vehicle(AUV)technology.It has become an important component of submarine development in technologically-advanced countries.Employing advanced and reliable recovery systems directly improves the safety and operational efficiency of submarines equipped with AUVs.In this paper,based on aerial refueling technology,a cone-shaped recovery system with two different guiding covers(closed structure and frame structure)is applied to the submarine.By taking the Suboff model as the research object,STAR-CCM was used to study the influence of the installation position of the recovery system,and the length of the rigid rod,on the Suboff model.It was found that when the recovery system is installed in the middle and rear of the Suboff model at the same velocity and the same length of the rigid rod,the Suboff model has the good stability and less drag.It experiences the largest drag when being installed in the front of the rigid rod.Moreover,when the recovery system is installed in the front and middle of the rigid rod,the drag increases as its length increases,and the lift decreases as its length increases.Compared with the closed structure guiding cover,the Suboff model will have less drag and better stability when the recovery system uses the frame structure guiding cover.Besides,the deflection and vibration of the rigid rod were also analyzed via mathematical theory. 展开更多
关键词 cone-shaped recovery system submarinE computational fluid dynamics(CFD) hydrodynamics DEFLECTION vibration
下载PDF
Technological Perspectives for Propulsion on Nuclear Attack Submarines
15
作者 Luciano Ondir Freire Delvonei Alves de Andrade 《World Journal of Nuclear Science and Technology》 2016年第4期309-319,共11页
This work aimed at proposing a new combination of technologies to improve military performances and reduce costs of nuclear attack submarines, without overlooking safety constraints. The last generation of nuclear att... This work aimed at proposing a new combination of technologies to improve military performances and reduce costs of nuclear attack submarines, without overlooking safety constraints. The last generation of nuclear attack submarines increased size to meet safety and operational requirements, imposing huge burden on costs side, reducing fleet size. The limitations of current Technologies employed were qualitatively discussed, explaining their limitations. There are new technologies (plate and shell heat exchangers) and architectural choices, like passive safety, and segregation of safety and normal systems, which may lead to reduction of costs and size of submarines. A qualitative analysis was provided on this combination of technologies, stressing their commercial nature and maturity, which reduced risks. The qualitative analysis showed the strong and weak points of this proposal, which adopted the concept of strength in numbers. Concluding, new Technologies enabled the existence of 3800 t nuclear attack submarines with powerful propulsion systems and good acoustic discretion. 展开更多
关键词 Plate and Shell Heat Exchangers Nuclear Attack submarines PWR
下载PDF
Origin of submarine canyon-channel systems along the middle segment of West Mariana Ridge,Philippine Sea
16
作者 Guangxu ZHANG Shuang LI +4 位作者 Wei LI Xiujuan WANG Duanxin CHEN Dongdong DONG Wenlong WANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第3期881-896,共16页
Submarine canyon-channel systems have been documented in the Parece Vela Basin,West Mariana Ridge;however,the mechanism of the formation and controlling factors remain poorly understood.Based on high-resolution multib... Submarine canyon-channel systems have been documented in the Parece Vela Basin,West Mariana Ridge;however,the mechanism of the formation and controlling factors remain poorly understood.Based on high-resolution multibeam bathymetric data and two-dimensional(2D)seismic profiles,we identified and mapped the submarine canyon-channel system along the middle segment of West Mariana Ridge in the Philippine Sea.These submarine canyon-channels show a main W-E orientation at depth of 2000–4500 m.They are approximately 72–128 km in length and 1.3–15 km in width,and their canyon heads are adjacent to the seamounts with several branches.The upper reaches of submarine canyon-channels are characterized by deeply incised,narrow,V-shaped thalwegs,suggesting the powerful erosion of gravity flows.The distinguished sediment waves are suggested to be resulted from the interaction of turbidity currents and seafloor.Our observations demonstrate that gravity flows originated from the collapses of seamount flanks plays a vital role in developing the submarine canyonchannel system along the West Mariana Ridge.This work provides better understanding of erosion,transport,and deposition of sediments from subducting ridges to deep-water basins,and also new insights into the origin and evolution of submarine canyon-channel systems along subducting ridges. 展开更多
关键词 submarine canyon-channel system gravity flow subducting ridges West Mariana Ridge
下载PDF
Vortex-Induced Vibration Response Features of A Submarine Multi-Span Pipeline via Towing Tank Experimental Tests
17
作者 XU Wan-hai JIA Kun +1 位作者 MA Ye-xuan SONG Zhi-you 《China Ocean Engineering》 SCIE EI CSCD 2023年第2期175-189,共15页
In offshore engineering, the phenomenon of free span often occurs, and the pipeline may have multiple free spans adjacent to each other, forming a multi-span pipeline. The interaction of different spans makes the stru... In offshore engineering, the phenomenon of free span often occurs, and the pipeline may have multiple free spans adjacent to each other, forming a multi-span pipeline. The interaction of different spans makes the structural vibration characteristics more complex, which may change the fatigue characteristics of the pipeline and affect the safety of the structure. In this paper, model tests were designed to explore the vortex-induced vibration(VIV) characteristics of multi-span pipelines and investigate the multi-span interaction mechanism. The experimental study mainly focused on the dynamic response of double-span pipelines, and further extended to triple-span pipelines, hoping that the results can be applied to more complex environment. The effects of span-length ratio, buried depth and axial force on VIV of the pipeline were investigated and discussed. The dynamic response of the pipeline varied with the span length. There was obvious interaction between different spans of multi-span pipelines, and the pipe-sediment interaction obviously affected the vibration characteristics of pipeline. The differences of pipeline burial depth and axial force changed the structural stiffness. With the increase of buried depth, the response amplitude presented a downward trend. The spanwise evolutions were asymmetric caused by the pipe-sediment interaction and multi-span interaction. The results can help to identify multi-span pipelines in engineering, and realize the prevention and control of free spans. 展开更多
关键词 vortex-induced vibration submarine pipeline pipe-sediment interaction multi-span interaction
下载PDF
Using radium isotopes to quantify submarine groundwater discharge at different scales in the Huanghe River Estuary,China
18
作者 Haowei Xu Disong Yang +6 位作者 Xiaoyi Guo Maosheng Gao Guangquan Chen Diansheng Ji Shengtao Chen Huaming Yu Bochao Xu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第8期32-39,共8页
As an important land-ocean interaction process,submarine groundwater discharge(SGD)is composed of multiple dynamical processes at different scales and plays an important role in the study of coastal ocean geochemical ... As an important land-ocean interaction process,submarine groundwater discharge(SGD)is composed of multiple dynamical processes at different scales and plays an important role in the study of coastal ocean geochemical budgets.However,most of the existing studies focus on the quantification of the total groundwater discharge,few studies are about the differentiation and quantification of groundwater discharge processes at different scales(i.e.,short-scale SGD and long-scale SGD).As a world-class river,the Huanghe River is highly turbid and heavily regulated by humans.These natural and anthropogenic factors have a significant impact on groundwater discharge processes in the Huanghe River Estuary(HRE).In this study,the distribution patterns of the natural geochemical tracer radium isotopes(^(224)Ra and^(223)Ra)and other hydrological parameters in the HRE were investigated during four cruises.By solving the mass balance of^(224)Ra and^(223)Ra in the HRE,the long-scale SGD flux was quantified as 0.01−0.19 m/d,and the short-scale SGD flux was 0.03−0.04 m/d.The rate of short-scale SGD remained essentially constant among seasons,while the rate of long-scale SGD varied considerably at different periods and showed a synchronous trend with the variation of river discharge.The results of this study are significant for understanding the SGD dynamics in the HRE and the contribution of SGD to the ocean geochemical budgets. 展开更多
关键词 radium isotopes submarine groundwater discharge Huanghe River Estuary
下载PDF
Theoretical and Numerical Studies on the Coupling Deformation of Global Lateral Buckling and Walking of Submarine Pipeline
19
作者 LIU Run HAO Xintong +3 位作者 LI Chengfeng LI Qingxin YU Zheng ZHAO Dang 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第6期1516-1528,共13页
Buckling initiation devices/techniques,including sleepers,distributed buoyancy,snake lay,and residual curvature method(RCM),have recently been widely applied in engineering.These initiated buckles may induce a long pi... Buckling initiation devices/techniques,including sleepers,distributed buoyancy,snake lay,and residual curvature method(RCM),have recently been widely applied in engineering.These initiated buckles may induce a long pipeline to transform into multiple short pipeline segments,which promote the occurrence of pipeline walking.Thus,a pipeline,which is designed to buckle laterally,may laterally and axially displace over time when subjected to repeated heating and cooling cycles.This study aims to reveal the coupling mechanism of pipeline walking and global lateral buckling.First,an analytic solution is proposed to estimate the walking of pipeline segments between two adjacent buckles.Then,the sensitivity of this method to heating and cooling cycles is analyzed.Results show the applicability of the proposed walking analytical solution of buckling pipelines.Subsequently,an influence analysis of walking on global buckling,including the capacity of buckling initiation,buckling amplitude,buckling mode,and failure assessment of the buckling pipeline,is performed.The results reveal that the effect of walking on the buckling axial force is negligible.However,pipeline walking will aggravate the asymmetry of the pipeline buckling and the failure parameters of the pipeline during the post-buckling. 展开更多
关键词 submarine pipeline global lateral buckling pipeline walking coupling deformation analytic solution
下载PDF
Distinguishing the main components of submarine groundwater and estimating the corresponding fluxes based on radium tracing method—taking the Maowei Sea for example
20
作者 Linwei Li Jinzhou Du +1 位作者 Xilong Wang Yanling Lao 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第8期1-23,共23页
Submarine groundwater discharge(SGD)is an important part in the land-sea interactions,which mainly contains three components:submarine fresh groundwater discharge(SFGD),tidal flat recirculated saline groundwater disch... Submarine groundwater discharge(SGD)is an important part in the land-sea interactions,which mainly contains three components:submarine fresh groundwater discharge(SFGD),tidal flat recirculated saline groundwater discharge(tidal flat RSGD)and subtidal recirculated saline groundwater discharge(subtidal RSGD).In order to make a more accurate assessment of the impact of SGD on coastal ecological environment,it is necessary to distinguish the main components of SGD.In this study,the Maowei Sea,located in the northern part of the Beibu Gulf,was selected as the study area.Based on the radium(Ra)tracing method,we present a new analytical method for distinguishing the three main components of SGD in this area combined with field data.The average daily flow along the coastline of the Maowei Sea of tidal flat RSGD was slightly higher than that of SFGD,and both two were on the magnitude of 1×10^(5)m^(3)/d.The average daily flow for the subtidal RSGD of the entire subtidal zone of the Maowei Sea reached to the magnitude of 1×10^(6)-1×10^(7)m^(3)/d.The long-term variation trend of terrestrial SGD is a valuable information for the study of the influence of terrigenous material on the coastal ecological environment.Based on the results of four sampling periods,it is found that the fluxes of SFGD and tidal flat RSGD in the Maowei Sea had good linear correlation with the net precipitation.As an example,January 2015 to August 2022 were selected as the study periods,and the variation trends of SFGD and tidal flat RSGD were calculated by linear function with net precipitation as the independent variable.The results showed that the flux of tidal flat RSGD was slightly higher than that of SFGD,and the difference between the two is larger in flood season while smaller in dry season.In general,in the coastal range of China,the total SGD flux in the Maowei Sea area is at a high level,and the SFGD flux is at a medium level. 展开更多
关键词 submarine groundwater discharge bottom sediment radium tracing method offshore transport long-term monitoring
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部