BACKGROUND Alzheimer’s disease(AD)is a neurodegenerative condition characterized by oxidative stress and neuroinflammation.Tanshinone ⅡA(Tan-ⅡA),a bioactive compound isolated from Salvia miltiorrhiza plants,has sho...BACKGROUND Alzheimer’s disease(AD)is a neurodegenerative condition characterized by oxidative stress and neuroinflammation.Tanshinone ⅡA(Tan-ⅡA),a bioactive compound isolated from Salvia miltiorrhiza plants,has shown potential neuroprotective effects;however,the mechanisms underlying such a function remain unclear.AIM To investigate potential Tan-ⅡA neuroprotective effects in AD and to elucidate their underlying mechanisms.METHODS Hematoxylin and eosin staining was utilized to analyze structural brain tissue morphology.To assess changes in oxidative stress and neuroinflammation,we performed enzyme-linked immunosorbent assay and western blotting.Additionally,the effect of Tan-ⅡA on AD cell models was evaluated in vitro using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.Genetic changes related to the long non-coding RNA(lncRNA)nuclear-enriched abundant transcript 1(NEAT1)/microRNA(miRNA,miR)-291a-3p/member RAS oncogene family Rab22a axis were assessed through reverse transcription quantitative polymerase chain reaction.RESULTS In vivo,Tan-ⅡA treatment improved neuronal morphology and attenuated oxidative stress and neuroinflammation in the brain tissue of AD mice.In vitro experiments showed that Tan-ⅡA dose-dependently ameliorated the amyloid-beta 1-42-induced reduction of neural stem cell viability,apoptosis,oxidative stress,and neuroinflammation.In this process,the lncRNA NEAT1-a potential therapeutic target-is highly expressed in AD mice and downregulated via Tan-ⅡA treatment.Mechanistically,NEAT1 promotes the transcription and translation of Rab22a via miR-291a-3p,which activates nuclear factor kappa-B(NF-κB)signaling,leading to activation of the pro-apoptotic B-cell lymphoma 2-associated X protein and inhibition of the anti-apoptotic B-cell lymphoma 2 protein,which exacerbates AD.Tan-ⅡA intervention effectively blocked this process by inhibiting the NEAT1/miR-291a-3p/Rab22a axis and NF-κB signaling.CONCLUSION This study demonstrates that Tan-ⅡA exerts neuroprotective effects in AD by modulating the NEAT1/miR-291a-3p/Rab22a/NF-κB signaling pathway,serving as a foundation for the development of innovative approaches for AD therapy.展开更多
Drought stress impairs crop growth and development.BEL1-like family transcription factors may be involved in plant response to drought stress,but little is known of the molecular mechanism by which these proteins regu...Drought stress impairs crop growth and development.BEL1-like family transcription factors may be involved in plant response to drought stress,but little is known of the molecular mechanism by which these proteins regulate plant response and defense to drought stress.Here we show that the BEL1-like transcription factor GhBLH5-A05 functions in cotton(Gossypium hirsutum)response and defense to drought stress.Expression of GhBLH5-A05 in cotton was induced by drought stress.Overexpression of GhBLH5-A05 in both Arabidopsis and cotton increased drought tolerance,whereas silencing GhBLH5-A05 in cotton resulted in elevated sensitivity to drought stress.GhBLH5-A05 binds to cis elements in the promoters of GhRD20-A09 and GhDREB2C-D05 to activate the expression of these genes.GhBLH5-A05 interacted with the KNOX transcription factor GhKNAT6-A03.Co-expression of GhBLH5-A05 and GhKNAT6-A03 increased the transcription of GhRD20-A09 and GhDREB2C-D05.We conclude that GhBLH5-A05 acts as a regulatory factor with GhKNAT6-A03 functioning in cotton response to drought stress by activating the expression of the drought-responsive genes GhRD20-A09 and GhDREB2C-D05.展开更多
SrUGT76G1,the most well-studied diterpene glycosyltransferase in Stevia rebaudiana,is key to the biosynthesis of economically important steviol glycosides(SGs).However,the molecular regulatory mechanism of SrUGT76G1 h...SrUGT76G1,the most well-studied diterpene glycosyltransferase in Stevia rebaudiana,is key to the biosynthesis of economically important steviol glycosides(SGs).However,the molecular regulatory mechanism of SrUGT76G1 has rarely been explored.In this study,we identified a MYB transcription factor,SrMYB1,using a yeast one-hybrid screening assay.SrMYB1 belongs to the typical R2R3-type MYB protein and is specifically localized in the nucleus with strong transactivation activity.The transcript of SrMYB1 is predominantly accumulated in flowers,but is also present at a lower level in leaves.Yeast one-hybrid and electrophoretic mobility shift assays verified that SrMYB1 binds directly to the MYB binding sites in the F4-3 fragment(+50–(–141))of the SrUGT76G1 promoter.Furthermore,we found that SrMYB1 could significantly repress the expression of SrUGT76G1 in both epidermal cells of tobacco leaves and stevia callus.Taken together,our results demonstrate that SrMYB1 is an essential upstream regulator of SrUGT76G1 and provide novel insight into the regulatory network for the SGs metabolic pathway in S.rebaudiana.展开更多
BACKGROUND Mesenchymal stem cells(MSCs)exert anti-oncogenic effects via exosomes containing non-coding RNA(ncRNA),which play important roles in tumor biology.Our preliminary study identified the interaction of the ncR...BACKGROUND Mesenchymal stem cells(MSCs)exert anti-oncogenic effects via exosomes containing non-coding RNA(ncRNA),which play important roles in tumor biology.Our preliminary study identified the interaction of the ncRNA hsa_-circ_0000563(circ563)and the circ563-associated miR-148a-3p in exosomes,as miR-148a-3p and its target metal-regulatory transcription factor-1(MTF-1)are implicated in hepatocellular carcinoma(HCC)progression.AIM To identify the clinical significance,functional implications,and mechanisms of circ563 in HCC.METHODS The expression levels of miR-148a-3p and MTF-1 in exosomes derived from MSC and HCC cells were compared,and their effects on HCC cells were assessed.Using a dual-luciferase reporter assay,miR-148a-3p was identified as an associated microRNA of circ563,whose role in HCC regulation was assessed in vitro and in vivo.RESULTS The silencing of circ563 blocked the HCC cell proliferation and invasion and induced apoptosis.Co-culturing of HCC cells with MSC-derived exosomes following circ563 overexpression promoted cell proliferation and metastasis and elicited changes in miR-148a-3p and MTF-1 expression.The tumor-promoting effects of circ563 were partially suppressed by miR-148a-3p overexpression or MTF-1 depletion.Xenograft experiments performed in nude mice confirmed that circ563-enriched exosomes facilitated tumor growth by upregulating the expression of MTF-1.In HCC tissues,circ563 expression was negatively correlated with miR-148a-3p expression but positively correlated with MTF-1 levels.CONCLUSION MSCs may exhibit anti-HCC activity through the exosomal circ563/miR-148a-3p/MTF-1 pathway,while exosomes can transmit circ563 to promote oncogenic behavior by competitively binding to miR-148a-3p to activate MTF-1.展开更多
基金Supported by 2020 Guangxi Zhuang Autonomous Region Health Care Commission Self-Financing Research Projects,No.Z202000962023 Guangxi University Young and Middle-Aged Teachers’Basic Research Ability Improvement Project,No.2023KY0091+1 种基金National Natural Science Foundation of China,No.82260241the Natural Science Foundation of Guangxi Province,No.2015GXNSFAA139171 and No.2020GXNSFAA259053.
文摘BACKGROUND Alzheimer’s disease(AD)is a neurodegenerative condition characterized by oxidative stress and neuroinflammation.Tanshinone ⅡA(Tan-ⅡA),a bioactive compound isolated from Salvia miltiorrhiza plants,has shown potential neuroprotective effects;however,the mechanisms underlying such a function remain unclear.AIM To investigate potential Tan-ⅡA neuroprotective effects in AD and to elucidate their underlying mechanisms.METHODS Hematoxylin and eosin staining was utilized to analyze structural brain tissue morphology.To assess changes in oxidative stress and neuroinflammation,we performed enzyme-linked immunosorbent assay and western blotting.Additionally,the effect of Tan-ⅡA on AD cell models was evaluated in vitro using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.Genetic changes related to the long non-coding RNA(lncRNA)nuclear-enriched abundant transcript 1(NEAT1)/microRNA(miRNA,miR)-291a-3p/member RAS oncogene family Rab22a axis were assessed through reverse transcription quantitative polymerase chain reaction.RESULTS In vivo,Tan-ⅡA treatment improved neuronal morphology and attenuated oxidative stress and neuroinflammation in the brain tissue of AD mice.In vitro experiments showed that Tan-ⅡA dose-dependently ameliorated the amyloid-beta 1-42-induced reduction of neural stem cell viability,apoptosis,oxidative stress,and neuroinflammation.In this process,the lncRNA NEAT1-a potential therapeutic target-is highly expressed in AD mice and downregulated via Tan-ⅡA treatment.Mechanistically,NEAT1 promotes the transcription and translation of Rab22a via miR-291a-3p,which activates nuclear factor kappa-B(NF-κB)signaling,leading to activation of the pro-apoptotic B-cell lymphoma 2-associated X protein and inhibition of the anti-apoptotic B-cell lymphoma 2 protein,which exacerbates AD.Tan-ⅡA intervention effectively blocked this process by inhibiting the NEAT1/miR-291a-3p/Rab22a axis and NF-κB signaling.CONCLUSION This study demonstrates that Tan-ⅡA exerts neuroprotective effects in AD by modulating the NEAT1/miR-291a-3p/Rab22a/NF-κB signaling pathway,serving as a foundation for the development of innovative approaches for AD therapy.
基金supported by the Project from the Ministry of Agriculture of China for Transgenic Research(2014ZX0800927B)the National Natural Science Foundation of China(31871667).
文摘Drought stress impairs crop growth and development.BEL1-like family transcription factors may be involved in plant response to drought stress,but little is known of the molecular mechanism by which these proteins regulate plant response and defense to drought stress.Here we show that the BEL1-like transcription factor GhBLH5-A05 functions in cotton(Gossypium hirsutum)response and defense to drought stress.Expression of GhBLH5-A05 in cotton was induced by drought stress.Overexpression of GhBLH5-A05 in both Arabidopsis and cotton increased drought tolerance,whereas silencing GhBLH5-A05 in cotton resulted in elevated sensitivity to drought stress.GhBLH5-A05 binds to cis elements in the promoters of GhRD20-A09 and GhDREB2C-D05 to activate the expression of these genes.GhBLH5-A05 interacted with the KNOX transcription factor GhKNAT6-A03.Co-expression of GhBLH5-A05 and GhKNAT6-A03 increased the transcription of GhRD20-A09 and GhDREB2C-D05.We conclude that GhBLH5-A05 acts as a regulatory factor with GhKNAT6-A03 functioning in cotton response to drought stress by activating the expression of the drought-responsive genes GhRD20-A09 and GhDREB2C-D05.
基金supported by the National Natural Science Foundation of China(31901597)the Natural Science Foundation of Jiangsu Province,China(BK20201243)。
文摘SrUGT76G1,the most well-studied diterpene glycosyltransferase in Stevia rebaudiana,is key to the biosynthesis of economically important steviol glycosides(SGs).However,the molecular regulatory mechanism of SrUGT76G1 has rarely been explored.In this study,we identified a MYB transcription factor,SrMYB1,using a yeast one-hybrid screening assay.SrMYB1 belongs to the typical R2R3-type MYB protein and is specifically localized in the nucleus with strong transactivation activity.The transcript of SrMYB1 is predominantly accumulated in flowers,but is also present at a lower level in leaves.Yeast one-hybrid and electrophoretic mobility shift assays verified that SrMYB1 binds directly to the MYB binding sites in the F4-3 fragment(+50–(–141))of the SrUGT76G1 promoter.Furthermore,we found that SrMYB1 could significantly repress the expression of SrUGT76G1 in both epidermal cells of tobacco leaves and stevia callus.Taken together,our results demonstrate that SrMYB1 is an essential upstream regulator of SrUGT76G1 and provide novel insight into the regulatory network for the SGs metabolic pathway in S.rebaudiana.
基金the National Natural Science Foundation of China,No.81972606 and 82271774.
文摘BACKGROUND Mesenchymal stem cells(MSCs)exert anti-oncogenic effects via exosomes containing non-coding RNA(ncRNA),which play important roles in tumor biology.Our preliminary study identified the interaction of the ncRNA hsa_-circ_0000563(circ563)and the circ563-associated miR-148a-3p in exosomes,as miR-148a-3p and its target metal-regulatory transcription factor-1(MTF-1)are implicated in hepatocellular carcinoma(HCC)progression.AIM To identify the clinical significance,functional implications,and mechanisms of circ563 in HCC.METHODS The expression levels of miR-148a-3p and MTF-1 in exosomes derived from MSC and HCC cells were compared,and their effects on HCC cells were assessed.Using a dual-luciferase reporter assay,miR-148a-3p was identified as an associated microRNA of circ563,whose role in HCC regulation was assessed in vitro and in vivo.RESULTS The silencing of circ563 blocked the HCC cell proliferation and invasion and induced apoptosis.Co-culturing of HCC cells with MSC-derived exosomes following circ563 overexpression promoted cell proliferation and metastasis and elicited changes in miR-148a-3p and MTF-1 expression.The tumor-promoting effects of circ563 were partially suppressed by miR-148a-3p overexpression or MTF-1 depletion.Xenograft experiments performed in nude mice confirmed that circ563-enriched exosomes facilitated tumor growth by upregulating the expression of MTF-1.In HCC tissues,circ563 expression was negatively correlated with miR-148a-3p expression but positively correlated with MTF-1 levels.CONCLUSION MSCs may exhibit anti-HCC activity through the exosomal circ563/miR-148a-3p/MTF-1 pathway,while exosomes can transmit circ563 to promote oncogenic behavior by competitively binding to miR-148a-3p to activate MTF-1.