A kinetic model based on the classical nucleation and growth theory has been proposed to predict the precipitation behavior of complex precipitate. The method for calculating absolute solution temperature, which is an...A kinetic model based on the classical nucleation and growth theory has been proposed to predict the precipitation behavior of complex precipitate. The method for calculating absolute solution temperature, which is an important guidance for determining solution treatment temperature, is also proposed based on thermodynamic model. In the model, nucleation of the second phase is assumed to be controlled by the effective diffusion, which involves the bulk diffusion and dislocation pipe diffusion, and growth is controlled by the bulk diffusion of forming elements. The interfacial energy of complex precipitate is calculated by the linear interpolation method, and the effects of alloying elements on precipitation behavior are manifested using weighted means of their diffusivities and concentration. The predictions were compared with the experimental measurements, and a good agreement was obtained.展开更多
基金This work was financially supported by the National Natural Science Foundation of China (51234002).
文摘A kinetic model based on the classical nucleation and growth theory has been proposed to predict the precipitation behavior of complex precipitate. The method for calculating absolute solution temperature, which is an important guidance for determining solution treatment temperature, is also proposed based on thermodynamic model. In the model, nucleation of the second phase is assumed to be controlled by the effective diffusion, which involves the bulk diffusion and dislocation pipe diffusion, and growth is controlled by the bulk diffusion of forming elements. The interfacial energy of complex precipitate is calculated by the linear interpolation method, and the effects of alloying elements on precipitation behavior are manifested using weighted means of their diffusivities and concentration. The predictions were compared with the experimental measurements, and a good agreement was obtained.