期刊文献+
共找到596篇文章
< 1 2 30 >
每页显示 20 50 100
Biomineralization and mineralization using microfluidics:A comparison study
1
作者 Yang Xiao Xiang He +3 位作者 Guoliang Ma Chang Zhao Jian Chu Hanlong Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期661-669,共9页
Biomineralization through microbial process has attracted great attention in the field of geotechnical engineering due to its ability to bind granular materials,clog pores,and seal fractures.Although minerals formed b... Biomineralization through microbial process has attracted great attention in the field of geotechnical engineering due to its ability to bind granular materials,clog pores,and seal fractures.Although minerals formed by biomineralization are generally the same as that by mineralization,their mechanical behaviors show a significant discrepancy.This study aims to figure out the differences between biomineralization and mineralization processes by visualizing and tracking the formation of minerals using microfluidics.Both biomineralization and mineralization processes occurred in the Y-shaped sandcontaining microchip that mimics the underground sand layers.Images from different areas in the reaction microchannel of microchips were captured to directly compare the distribution of minerals.Crystal size and numbers from different reaction times were measured to quantify the differences between biomineralization and mineralization processes in terms of crystal kinetics.Results showed that the crystals were precipitated in a faster and more uncontrollable manner in the mineralization process than that in the biomineralization process,given that those two processes presented similar precipitation stages.In addition,a more heterogeneous distribution of crystals was observed during the biomineralization process.The precipitation behaviors were further explained by the classical nucleation crystal growth theory.The present microfluidic tests could advance the understanding of biomineralization and provide new insight into the optimization of biocementation technology. 展开更多
关键词 Microbially induced carbonate precipitation (MICP) Biocementation CRYSTAL Calcium carbonate NUCLEATION
下载PDF
Description of martensitic transformation kinetics in Fe-C-X(X = Ni,Cr,Mn,Si) system by a modified model
2
作者 Xiyuan Geng Hongcan Chen +3 位作者 Jingjing Wang Yu Zhang Qun Luo Qian Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1026-1036,共11页
Controlling the content of athermal martensite and retained austenite is important to improving the mechanical properties of high-strength steels,but a mechanism for the accurate description of martensitic transformat... Controlling the content of athermal martensite and retained austenite is important to improving the mechanical properties of high-strength steels,but a mechanism for the accurate description of martensitic transformation during the cooling process must be addressed.At present,frequently used semi-empirical kinetics models suffer from huge errors at the beginning of transformation,and most of them fail to exhibit the sigmoidal shape characteristic of transformation curves.To describe the martensitic transformation process accurately,based on the Magee model,we introduced the changes in the nucleation activation energy of martensite with temperature,which led to the varying nucleation rates of this model during martensitic transformation.According to the calculation results,the relative error of the modified model for the martensitic transformation kinetics curves of Fe-C-X(X = Ni,Cr,Mn,Si) alloys reached 9.5% compared with those measured via the thermal expansion method.The relative error was approximately reduced by two-thirds compared with that of the Magee model.The incorporation of nucleation activation energy into the kinetics model contributes to the improvement of its precision. 展开更多
关键词 Fe-C-X system martensitic transformation kinetics curve semi-empirical model nucleation activation energy
下载PDF
Unlock the full potential of carbon cloth-based scaffolds towards magnesium metal storage via regulation on magnesiophilicity and surface geometric structure
3
作者 Jing Liu Min Wang +4 位作者 Zhonghua Zhang Jinlei Zhang Yitao He Zhenfang Zhou Guicun Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期423-434,I0010,共13页
The development of rechargeable magnesium(Mg) batteries is of practical significance to upgrade the electric energy storage devices due to exceptional capacity and abundant resources of Mg-metal anode.However,the reve... The development of rechargeable magnesium(Mg) batteries is of practical significance to upgrade the electric energy storage devices due to exceptional capacity and abundant resources of Mg-metal anode.However,the reversible Mg electrochemistry suffers from unsatisfied rate capability and lifespan,mainly caused by non-uniform distribution of electrodeposits.In this work,a fresh design concept of threedimensional carbon cloths scaffolds is proposed to overcome the uncontrollable Mg growth via homogenizing electric field and improving magnesiophilicity.A microscopic smooth and nitrogen-containing defective carbonaceous layer is constructed through a facile pyrolysis of ZIF8 on carbon cloths.As revealed by finite element simulation and DFT calculation results,the smooth surface endows with uniform electric field distribution and simultaneously the nitrogen-doping species enable good magnesiophilicity of scaffolds.The fine and uniform Mg nucleus as well as the inner electrodeposit behavior are also disclosed.As a result,an exceptional cycle life of 500 cycles at 4.0 mA cm^(-2) and 4.0 mA h cm^(-2) is firstly realized to our best knowledge.Besides,the functional scaffolds can be cycled for over 2200 h at 2.0 mA cm^(-2) under a normalized capacity of 5.0 mA h cm^(-2),far exceeding previous results.This work offers an effective approach to enable the full potential of carbon cloths-based scaffolds towards metal storage for next generation battery applications. 展开更多
关键词 Magnesium metal anodes ELECTRODEPOSITION Heterogeneous nucleation
下载PDF
Nucleation of Supercooled Water by Neutrons: Latitude Dependence and Implications for Cloud Modelling
4
作者 Peter W. Wilson Elizabeth Wilson-Park Abraham G. Wilson 《Atmospheric and Climate Sciences》 2024年第2期221-232,共12页
It has recently been shown that incident particles, neutrons, can initiate the freezing in a supercooled water volume. This new finding may have ramifications for the interpretation of both experimental data on the nu... It has recently been shown that incident particles, neutrons, can initiate the freezing in a supercooled water volume. This new finding may have ramifications for the interpretation of both experimental data on the nucleation of laboratory samples of supercooled water and perhaps more importantly on the interpretation of ice nucleation involved in cloud physics. For example, if some fraction of the cloud nucleation previously attributed to dust, soot, or aerosols has been caused by cosmogenic neutrons, fresh consideration is required in the context of climate models. Moreover, as cosmogenic neutrons, most being muon-induced, have much greater flux at high latitudes, estimates of ice nucleates in these regions may be larger than required to accurately model cloud and condensation properties. This discrepancy has been pointed out in IPCC reports. Our paper discusses the connection between the new concept of neutrons nucleating supercooled water and the need for a new source of nucleation in high latitude clouds, ideally causing others to review current data, or to analyse future data with this idea in mind. . 展开更多
关键词 Climate Models Ice Nucleation Neutrons SUPERCOOLING
下载PDF
Highly Reversible Zn Metal Anodes Enabled by Increased Nucleation Overpotential 被引量:2
5
作者 Zhengqiang Hu Fengling Zhang +8 位作者 Anbin Zhou Xin Hu Qiaoyi Yan Yuhao Liu Faiza Arshad Zhujie Li Renjie Chen Feng Wu Li Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期197-209,共13页
Dendrite formation severely compromises further development of zinc ion batteries. Increasing the nucleation overpotential plays a crucial role in achieving uniform deposition of metal ions. However, this strategy has... Dendrite formation severely compromises further development of zinc ion batteries. Increasing the nucleation overpotential plays a crucial role in achieving uniform deposition of metal ions. However, this strategy has not yet attracted enough attention from researchers to our knowledge. Here, we propose that thermodynamic nucleation overpotential of Zn deposition can be boosted through complexing agent and select sodium L-tartrate(Na-L) as example. Theoretical and experimental characterization reveals L-tartrate anion can partially replace H_(2)O in the solvation sheath of Zn^(2+), increasing de-solvation energy. Concurrently, the Na^(+) could absorb on the surface of Zn anode preferentially to inhibit the deposition of Zn^(2+) aggregation. In consequence, the overpotential of Zn deposition could increase from 32.2 to 45.1 mV with the help of Na-L. The Zn-Zn cell could achieve a Zn utilization rate of 80% at areal capacity of 20 mAh cm^(-2). Zn-LiMn_(2)O_(4) full cell with Na-L additive delivers improved stability than that with blank electrolyte. This study also provides insight into the regulation of nucleation overpotential to achieve homogeneous Zn deposition. 展开更多
关键词 Nucleation overpotential Complexing agent Zn batteries Zn deposition
下载PDF
Controlling dynamic recrystallization via modified LPSO phase morphology and distribution in Mg-Gd-Y-Zn-Zr alloy 被引量:1
6
作者 Ce Zheng Shuaifeng Chen +3 位作者 Ming Cheng Shihong Zhang Yingju Li Yuansheng Yang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第11期4218-4234,共17页
Featured initial microstructures of Mg-11Gd-4Y-2Zn-0.5Zr alloy(wt%) were obtained by adjusting temperatures of solid solution and cooling methods, including island intergranular 18R and 14H LPSO phases with low-densit... Featured initial microstructures of Mg-11Gd-4Y-2Zn-0.5Zr alloy(wt%) were obtained by adjusting temperatures of solid solution and cooling methods, including island intergranular 18R and 14H LPSO phases with low-density stacking faults, differentially spaced lamellar intragranular 14H-LPSO phases, and network intergranular 18R-LPSO phases with high-density intragranular stacking faults. Effects of these featured LPSO phases and stacking faults on dynamic recrystallization(DRX) behavior were investigated via hot compression. Promoted DRX behavior via particle stimulated nucleation(PSN) is introduced by coexisting intergranular island 18R and 14H LPSO phases and intragranular wide spacing lamellar 14H-LPSO phases, contributing the highest DRX fraction of 42.6%. Conversely, it is found that DRX behavior with network intergranular 18R-LPSO phases and dense intragranular stacking fault is considerably inhibited with the lowest fraction of 22.8%. That is, the restricted DRX due to dislocations pinning by stacking faults overwhelms the enhanced DRX behavior via PSN of island intergranular 18R and 14H LPSO phases. Specially, compared with dense intragranular lamellar 14H-LPSO phases, high-density stacking faults exert a larger inhibition effect on DRX behavior. 展开更多
关键词 Mg-Gd-Y-Zn-Zr Dynamic recrystallization LPSO phases Particle stimulated nucleation Stacking fault
下载PDF
Uniform deposition of ultra-thin TiO_(2) film on mica substrate by atmospheric pressure chemical vapor deposition: Effect of precursor concentration 被引量:1
7
作者 Ming Liu Ying Li +4 位作者 Rui Wang Guoqiang Shao Pengpeng Lv Jun Li Qingshan Zhu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第8期99-107,共9页
The performance of pearlescent pigment significantly affected by the grain size and the roughness of deposited film. The effect of TiCl_(4) concentration on the initial deposition of TiO_(2) on mica by atmospheric pre... The performance of pearlescent pigment significantly affected by the grain size and the roughness of deposited film. The effect of TiCl_(4) concentration on the initial deposition of TiO_(2) on mica by atmospheric pressure chemical vapor deposition(APCVD) was investigated. The precursor concentration significantly affected the deposition and morphology of TiO_(2) grains assembling the film. The deposition time for fully covering the surface of mica decreased from 120 to 10 s as the TiCl_(4) concentration increased from 0.38%to 2.44%. The grain size increased with the TiCl_(4) concentration. The AFM and TEM analysis demonstrated that the aggregation of TiO_(2) clusters at the initial stage finally result to the agglomeration of fine TiO_(2) grains at high TiCl_(4) concentrations. Following the results, it was suggested that the nucleation density and size was easy to be adjusted when the TiCl_(4) concentration is below 0.90%. 展开更多
关键词 Chemical vapor deposition TiO_(2)thin film Nucleation reaction Precursor concentration Pearlescent pigment
下载PDF
Nucleation and growth control for iron-and phosphorus-rich phases from a modified steelmaking waste slag
8
作者 Juncheng Li Guoxuan Li +7 位作者 Feng Qiu Rong Wang Jinshan Liang Yi Zhong Dong Guan Jingwei Li Seetharaman Sridhar Zushu Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第2期378-387,共10页
Recovering the iron(Fe)and phosphorus(P)contained in steelmaking slags not only reduces the environmental burden caused by the accumulated slag,but also is the way to develop a circular economy and achieve sustainable... Recovering the iron(Fe)and phosphorus(P)contained in steelmaking slags not only reduces the environmental burden caused by the accumulated slag,but also is the way to develop a circular economy and achieve sustainable development in the steel industry.We had pre-viously found the possibility of recovering Fe and P resources,i.e.,magnetite(Fe_(3)O_(4)) and calcium phosphate(Ca_(10)P_(6)O_(25)),contained in steel-making slags by adjusting oxygen partial pressure and adding modifier B_(2)O_(3).As a fundamental study for efficiently recovering Fe and P from steelmaking slag,in this study,the crystallization behavior of the CaO-SiO_(2)-FeO-P_(2)O_(5)-B_(2)O_(3) melt has been observed in situ,using a confocal scanning laser microscope(CLSM).The kinetics of nucleation and growth of Fe-and P-rich phases have been calculated using a classical crys-tallization kinetic theory.During cooling,a Fe_(3)O_(4) phase with faceted morphology was observed as the 1st precipitated phase in the isothermal interval of 1300-1150℃,while Ca_(10)P_(6)O_(25),with rod-shaped morphology,was found to be the 2nd phase to precipitate in the interval of 1150-1000℃.The crystallization abilities of Fe_(3)O_(4) and Ca_(10)P_(6)O_(25) phases in the CaO-SiO_(2)-FeO-P_(2)O_(5)-B_(2)O_(3) melt were quantified with the in-dex of(T_(U)−T_(I))/T_(I)(where T_(I) represents the peak temperature of the nucleation rate and TU stands for that of growth rate),and the crystalliza-tion ability of Fe_(3)O_(4) was found to be larger than that of Ca_(10)P_(6)O_(25) phase.The range of crystallization temperature for Fe_(3)O_(4) and Ca_(10)P_(6)O_(25) phases was optimized subsequently.The Fe_(3)O_(4) and Ca_(10)P_(6)O_(25) phases are the potential sources for ferrous feedstock and phosphate fertilizer,respectively. 展开更多
关键词 steelmaking slag MAGNETITE calcium phosphate NUCLEATION GROWTH KINETICS
下载PDF
Design of a graphene oxide@melamine foam/polyaniline@erythritol composite phase change material for thermal energy storage
9
作者 Jianhui Zhou Xin Lai +3 位作者 Jianfeng Hu Haijie Qi Shan Liu Zhengguo Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期282-290,共9页
At present,only a single modification method is adopted to improve the shortcomings of erythritol(ET)as a phase change material(PCM).Compared with a single modification method,the synergistic effect of multiple modifi... At present,only a single modification method is adopted to improve the shortcomings of erythritol(ET)as a phase change material(PCM).Compared with a single modification method,the synergistic effect of multiple modification methods can endow ET with comprehensive performance to meet the purpose of package,supercooling reduction,and enhancement of thermal conductivity.In this work,we innovatively combine graphene oxide(GO)nanosheet modified melamine foam(MF)and polyaniline(PANI)to construct a novel ET-based PCM by blending and porous material adsorption modification.PANI as the nucleation center can enhance the crystallization rate,thereby reducing the supercooling of ET.Meanwhile,GO@MF foam can not only be used as a porous support material to encapsulate ET but also as a heat conduction reinforcement to improve heat storage and release rate.As a result,the supercooling of GO@MF/PANI@ET(GMPET)composite PCM decreases from 91.2℃ of pure ET to 57.9℃ and its thermal conductivity(1.58 W·m^(-1)·K^(-1))is about three times higher than that of pure ET(0.57 W·m^(-1)·K^(-1)).Moreover,after being placed at 140℃ for 2 h,there is almost no ET leakage in the GMPET composite PCM,and the mass loss ratio is less than 0.75%.In addition,the GMPET composite PCM displays a high melting enthalpy of about 259 J·g^(-1) and a high initial mass loss temperature of about 198℃.Even after the 200th cycling test,the phase transition temperature and the latent heat storage capacity of the GMPET PCM all remain stable.This work offers an effective and promising strategy to design ET-based composite PCM for the field of energy storage. 展开更多
关键词 Composites ENTHALPY Heat conduction NUCLEATION Phase change
下载PDF
Dissolution behavior,thermodynamic and kinetic analysis of malonamide by experimental measurement and molecular simulation
10
作者 Peng Yang Shengzhe Jia +4 位作者 Yan Wang Zongqiu Li Songgu Wu Jingkang Wang Junbo Gong 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期260-269,共10页
In this study,the solid structure,dissolution behavior,thermodynamic properties and nucleation kinetics of malonamide were explored.Firstly,the Hirshfeld surface analysis and molecular electrostatic potential surface ... In this study,the solid structure,dissolution behavior,thermodynamic properties and nucleation kinetics of malonamide were explored.Firstly,the Hirshfeld surface analysis and molecular electrostatic potential surface were plotted to reveal the percentage contribution of various intermolecular contacts and location of the strongest hydrogen bond.Next,the solubility of malonamide in 12 solvents was determined by dynamic method at temperatures from 278.15 K to 318.15 K.Four thermodynamic models were applied to analyze solubility results.In addition,the thermodynamic properties were calculated to further analyze and discuss the dissolution behavior of malonamide.Moreover,the physicochemical properties of solvents were explored to express the solvent effects.The results illustrate“like dissolves like”,“mass transfer”and“solvent–solute interaction”rules play the synergistic effects on the dissolution process.The molecular dynamic simulation,including radial distribution function analysis and solvent free energy,was used to further explain the dissolution behavior.At last,the nucleation rate and effective interfacial energy in methanol solvent was measured and calculated to reveal the nucleation behaviour. 展开更多
关键词 MALONAMIDE SOLUBILITY Thermodynamic properties Molecular simulation Nucleation rate
下载PDF
Embryo-to-lamella transition of grain boundary twins in magnesium
11
作者 Mariyappan Arul Kumar Irene J Beyerlein 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第12期4485-4497,共13页
A combined experimental and computational analysis is performed to investigate the less commonly studied embryo-to-lamella transition of deformation twins in magnesium. This work aims to understand the structural vari... A combined experimental and computational analysis is performed to investigate the less commonly studied embryo-to-lamella transition of deformation twins in magnesium. This work aims to understand the structural variables controlling the embryo-to-lamella transition from grain boundaries. Statistical analysis of hundreds of early-stage twins in the lightly deformed microstructure reveals a prevailing wedge shape,with a much thicker base along the grain boundary(GB) where they originate and a thinner tip terminating in the crystal. The analysis also shows that the GB base is super thick and identifies a minimum GB twin thickness among all early-stage twins that is about one micron. A crystal plasticity-based full-field model is employed to calculate the driving forces to migrate the boundary of a three-dimensional GB twin embryo. The stress analysis, considering a full range of embryo shapes and neighboring grain orientations, indicate that the twin embryo is most likely going to form a wedge shape when it first propagates. The calculations predict that the thickness of the embryo at the GB needs to be significantly larger than its length into the crystal in order to propagate into the crystal. The analysis finds that the more aligned the twin embryo variant is with basal slip in the neighboring grain, the thinner the twin embryo needed for propagation. 展开更多
关键词 MAGNESIUM Twin embryo Crystal plasticity Nucleation Grain neighbor
下载PDF
Different roles of surfaces’ interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
12
作者 傅宣豪 周昕 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期40-46,共7页
The freezing of water is one of the most common processes in nature and affects many aspects of human activity. Ice nucleation is a crucial part of the freezing process and usually occurs on material surfaces. There i... The freezing of water is one of the most common processes in nature and affects many aspects of human activity. Ice nucleation is a crucial part of the freezing process and usually occurs on material surfaces. There is still a lack of clear physical pictures about the central question how various features of material surfaces affect their capability in facilitating ice nucleation. Via molecular dynamics simulations, here we show that the detailed features of surfaces, such as atomic arrangements, lattice parameters, hydrophobicity, and function forms of surfaces’ interaction to water molecules, generally affect the ice nucleation through the average adsorption energy per unit-area surfaces to individual water molecules, when the lattice of surfaces mismatches that of ice. However, for the surfaces whose lattice matches ice, even the detailed function form of the surfaces’ interaction to water molecules can largely regulate the icing ability of these surfaces. This study provides new insights into understanding the diverse relationship between various microscopic features of different material surfaces and their nucleation efficacy. 展开更多
关键词 ice nucleation molecular simulations lattice match HYDROPHILICITY
下载PDF
Lithiophilicity: The key to efficient lithium metal anodes for lithium batteries
13
作者 Yahao Li Yue Li +4 位作者 Lulu Zhang Huachao Tao Qingyu Li Jiujun Zhang Xuelin Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期123-136,I0004,共15页
Lithium metal anode of lithium batteries,including lithium-ion batteries,has been considered the anode for next-generation batteries with desired high energy densities due to its high theoretical specific capacity(386... Lithium metal anode of lithium batteries,including lithium-ion batteries,has been considered the anode for next-generation batteries with desired high energy densities due to its high theoretical specific capacity(3860 mA h g^(-1))and low standards electrode potential(-3.04 V vs.SHE).However,the highly reactive nature of metallic lithium and its direct contact with the electrolyte could lead to severe chemical reactions,leading to the continuous consumption of the electrolyte and a reduction in the cycle life and Coulombic efficiency.In addition,the solid electrolyte interface formed during battery cycling is mainly inorganic,which is too fragile to withstand the extreme volume change during the plating and stripping of lithium.The uneven flux of lithium ions could lead to excessive lithium deposition at local points,resulting in needle-like lithium dendrites,which could pierce the separator and cause short circuits,battery failure,and safety issues.In the last five years,tremendous efforts have been dedicated to addressing these issues,and the most successful improvements have been related to lithiophilicity optimizations.Thus,this paper comprehensively reviewed the lithiophilicity regulation in lithium metal anode modifications and highlighted the vital effect of lithiophilicity.The remaining challenges faced by the lithiophilicity optimization for lithium metal anodes are discussed with the proposed research directions for overcoming the technical challenges in this subject. 展开更多
关键词 Lithium metal anode Lithiophilicity optimization HOST Artificial SEI Nucleation sites Dendrite growth
下载PDF
Effect of mixing temperature on microstructure of an Al-Si alloy prepared by controlled diffusion solidification
14
作者 Han Xue Ti-jun Chen +3 位作者 Xue-zheng Zhang Guang-li Bi Ying Ma Ren-guo Guan 《China Foundry》 SCIE CAS CSCD 2023年第3期241-252,共12页
The effects of mixing temperature,i.e.,the temperatures of two precursor melts(pure Al and Al-12Si),on the temperature and solute fields of resultant mixture,the nucleation and growth,and the size and morphology of pr... The effects of mixing temperature,i.e.,the temperatures of two precursor melts(pure Al and Al-12Si),on the temperature and solute fields of resultant mixture,the nucleation and growth,and the size and morphology of primary grains during controlled diffusion solidification(CDS) of Al-8Si alloy were investigated by using simulation and calculation.The results indicate that a lower mixing temperature is helpful for achieving more supercooled microscale Al-rich pockets in the mixture,and increasing the width and supercooling degree of supercooling zone in the Al-rich pockets,and thus,the nucleation rate.The nuclei grow up in nondendritic mode,resulting in spheroidal,at least,nondendritic grains.In a successful CDS,the superheat degrees of the two precursor melts should be limited within several degrees,and it is not necessary to extra stipulate the superheat degree of target alloy melt(Al-8Si) when the requirement about Gibbs energies of the three melts is matched.Subsequent observation on casting microstructures shows that the employed simulation and calculation processes are reasonable and the achieved results are reliable. 展开更多
关键词 controlled diffusion solidification Al-Si alloy nucleation and growth SUPERCOOLING nondendritic grains
下载PDF
Inner-pore reduction nucleation of palladium nanoparticles in highly conductive wurster-type covalent organic frameworks for efficient oxygen reduction electrocatalysis
15
作者 Weiwen Wang Lu Zhang +4 位作者 Tianping Wang Zhen Zhang Xiangnan Wang Chong Cheng Xikui Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期543-552,I0014,共11页
Covalent organic frameworks(COFs)have emerged as a class of promising supports for electrocatalysis because of their advantages including good crystallinity,highly ordered pores,and structural diversity.However,their ... Covalent organic frameworks(COFs)have emerged as a class of promising supports for electrocatalysis because of their advantages including good crystallinity,highly ordered pores,and structural diversity.However,their poor conductivity represents the main obstruction to their practical application.Here,we reported a novel synthesis strategy for synergistically endowing a triphenylamine-based COFs with improved electrical conductivity and excellent catalytic activity for oxygen reduction,via the in-situ redox deposition and confined growth of palladium nanoparticles inside the porous structure of COFs using reductive triphenylamine frameworks as reducing agent;meanwhile,the triphenylamine unit was oxidized to radical cation structure and affords radical cation COFs with conductivity as high as3.2*10^(-1) S m^(-1).Such a uniform confine palladium nanoparticle on highly conductive COFs makes it an efficient electrocatalyst for four-electron oxygen reduction reaction(4e-ORR),showing excellent activities and fast kinetics with a remarkable half-wave potential(E_(1/2))of 0.865 V and an ultralow Tafel slope of 39.7 mV dec^(-1) in alkaline media even in the absence of extra commercial conductive fillers.The generality of this strategy was proved by preparing the different metal and metal alloy nanoparticles supported on COFs(Au@COF,Pt@COF,AuPd@COF,AgPd@COF,and PtPd@COF)using reductive triphenylamine frameworks as reducing agent.This work not only provides a facile strategy for the fabrication of highly conductive COF supported ORR electrocatalysts,but also sheds new light on the practical application of Zn-air battery. 展开更多
关键词 Covalent organic frameworks Wurster-type structure In-situ reduction nucleation Palladium nanoparticles Oxygen reduction electrocatalysis
下载PDF
Thermodynamic re-assessment of the Mg-Gd-Y ternary system coupling with the driving forces for phase precipitations during aging process
16
作者 Xiaopan Wu Changrong Li +1 位作者 Cuiping Guo Zhenmin Du 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第7期2495-2517,共23页
Based on the available experimental phase equilibrium relations and aging precipitation sequences,the Mg–Gd–Y ternary system has been thermodynamically re-assessed by means of CALPHAD technique.To simulate the exper... Based on the available experimental phase equilibrium relations and aging precipitation sequences,the Mg–Gd–Y ternary system has been thermodynamically re-assessed by means of CALPHAD technique.To simulate the experimentally reported aging precipitation sequence,α(Mg)_(SS)(supersaturated)→GP zones(D019-type,metastable)→β’-Mg_(7)Gd(c-bco,metastable)→β_(1)-Mg_(3)Gd(fcc,metastable)→β-Mg_(5)Gd(fcc,stable)near the Mg–Gd side,andα(Mg)SS(supersaturated)→β’-Mg_(7)Y(c-bco,metastable)→β-Mg_(24)Y_(5)(bcc,stable)near the Mg–Y side,the effective nucleation driving forces obtained by deducting the nucleation resistances from the thermodynamic driving forces are calculated and analyzed.Two metastable components,GP zones(D019-type)andβ’(c-bco)ordered fromα(Mg)_(SS),do not exist in the stable equilibrium phase diagram but appear in the annealing process of typical alloys.The Redlich–Kister equations are adopted to describe three solution phases,Liquid,HCP_A3 and BCC_A2.The intermediate compounds Mg_(2)Y,Mg_(24)Y_(5),Mg_(2)Gd,Mg_(3)Gd and Mg_(5)Gd are expressed by the formulas of(Mg,Y)_(2/3)(Gd,Mg,Y)_(1/3),Mg_(24/29)(Gd,Mg,Y)_(4/29)Y1/29,(Gd,Mg)_(2/3)(Gd,Mg,Y)_(1/3),(Gd,Mg)_(3/4)(Gd,Mg,Y)_(1/4)and Mg_(5/6)(Gd,Mg,Y)_(1/6),respectively.In particular,the two-sublattice models(Gd,Mg,Y)_(1/2)(Gd,Mg,Y)_(1/2),(Gd,Mg,Y)_(3/4)(Gd,Mg,Y)_(1/4)and(Gd,Mg,Y)_(7/8)(Gd,Mg,Y)_(1/8)have been respectively used to describe the stable Mg(Gd,Y)(BCC_B2)alloy compound as well as the metastable GP zones(D019-type)andβ’(c-bco)phase,in order to cope with the order-disorder transitions.A set of self-consistent thermodynamic parameters has been obtained to ensure the thermodynamic calculations well consistent with the reported experimental data,containing not only the stable equilibrium phase diagram but also the aging precipitation sequence. 展开更多
关键词 Mg-Gd-Y ternary system Thermodynamic re-assessment Aging precipitation sequence Nucleation driving force CALPHAD technique
下载PDF
Bubble nucleation in spherical liquid cavity wrapped by elastic medium
17
作者 张先梅 李凡 +5 位作者 王成会 胡静 莫润阳 沈壮志 郭建中 林书玉 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期323-332,共10页
According to classical nucleation theory, gas nuclei can generate and grow into a cavitation bubble when the liquid pressure exceeds a threshold. However, classical nucleation theory does not include boundary effects.... According to classical nucleation theory, gas nuclei can generate and grow into a cavitation bubble when the liquid pressure exceeds a threshold. However, classical nucleation theory does not include boundary effects. An enclosed spherical liquid cavity surrounded by elastic medium is introduced to model the nucleation process in tissue. Based on the equilibrium pressure relationship of a quasi-static process, the expressions of the threshold and the modified nucleation rate are derived by considering the tissue elasticity. It is shown that the constraint plays an important role in the nucleation process. There is a positive correlation between nucleation threshold pressure and constraint, which can be enhanced by an increasing tissue elasticity and reducing the size of the cavity. Meanwhile, temperature is found to be a key parameter of nucleation process, and cavitation is more likely to occur in confined liquids at temperature T > 100℃. In contrast, less influences are induced by these factors, such as bulk modulus, liquid cavity size, and acoustic frequency. Although these theoretical predictions of the thresholds have been demonstrated by many previous researches, much lower thresholds can be obtained in liquids containing dissolved gases, e.g., the nucleation threshold is about-21 MPa in a liquid of 0.8-nm gas nuclei at room temperature. Moreover, when there is a gas nucleus of 20 nm, the theoretical threshold pressure might be less than1 MPa. 展开更多
关键词 elastic confinement liquid cavities cavitation nucleation
下载PDF
Effects of Ce content on the modification of Mg_(2)Si phase in Mg-5Al-2Si alloy
18
作者 Bo Hu Wen-Jie Zhu +4 位作者 Zi-Xin Li Seul Bi Lee De-Jiang Li Xiao-Qin Zeng Yoon Suk Choi 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第7期2299-2311,共13页
The effect of Ce content(0–1.6 wt.%)on the modification of Mg_(2)Si phase in the as-cast Mg-5Al-2Si alloy was investigated.The original Chinese script type Mg_(2)Si phase was refined distinctly and transformed to dis... The effect of Ce content(0–1.6 wt.%)on the modification of Mg_(2)Si phase in the as-cast Mg-5Al-2Si alloy was investigated.The original Chinese script type Mg_(2)Si phase was refined distinctly and transformed to dispersive block shape gradually by adding Ce element.The length of Chinese script type Mg_(2)Si phase was reduced from 110 to 50μm with increasing Ce content to 1.6 wt.%.The results calculated by Pandat software indicated that the added Ce element first combined with Si to form CeSi_(2)phase,which could serve as the heterogeneous nucleation of Mg_(2)Si phase due to the small lattice mismatch of 7.97%.The modification of Mg_(2)Si phase was mainly attributed to the facts that Ce changed the growth steps of Mg_(2)Si phase and CeSi_(2)promoted the nucleation of Mg_(2)Si phase.With increasing Ce content from 0 wt.%to 1.6 wt.%,the YS,UTS and EL at 150℃were improved from 67.7 MPa,91.2 MPa and 1.6%to 84.2 MPa,128 MPa and 7.5%,respectively. 展开更多
关键词 Mg-Al-Si alloys Mg_(2)Si modification Heterogeneous nucleation Mechanical properties
下载PDF
Conceptual design and safety characteristics of a new multi-mission high flux research reactor
19
作者 Wei Xu Jian Li +4 位作者 Heng Xie Zhi-Hong Liu Jing Zhao Fei Xie Lei Shi 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第3期9-24,共16页
Research reactors with neutron fluxes higher than 10^(14) n cm^(−2) s^(−1) are widely used in nuclear fuel and material irradiation,neutron-based scientific research,and medical and industrial isotope production.Such ... Research reactors with neutron fluxes higher than 10^(14) n cm^(−2) s^(−1) are widely used in nuclear fuel and material irradiation,neutron-based scientific research,and medical and industrial isotope production.Such high flux research reactors are not only important scientific research facilities for the development of nuclear energy but also represent the national comprehensive technical capability.China has several high flux research reactors that do not satisfy the requirements of nuclear energy development.A high flux research reactor has the following features:a compact core arrangement,high power density,plate-type fuel elements,a short refueling cycle,and high coolant velocity in the core.These characteristics make it difficult to simultaneously realize high neutron flux and optimal safety margin.A new multi-mission high flux research reactor was designed by the Institute of Nuclear and New Energy Technology at Tsinghua University in China;the reactor can simul-taneously realize an average neutron flux higher than 2.0×10^(15) n cm^(−2) s^(−1) and fulfill the current safety criterion.This high flux research reactor features advanced design concepts and has sufficient safety margins according to the preliminary safety analysis.Based on the analysis of the station blackout accident,loss of coolant accident,and reactivity accident of a single-control drum rotating out accidently,the maximum temperature of the cladding surface,minimum departure from nucleate boiling ratio,and temperature difference to the onset of nucleate boiling temperature satisfy the design limits. 展开更多
关键词 High flux research reactor Neutron flux Safety analysis Maximum temperature of cladding surface Departure from nucleate boiling ratio
下载PDF
Simultaneous refinement of α-Mg grains and β-Mg_(17)Al_(12) in Mg-Al based alloys via heterogeneous nucleation on Al_(8)Mn_(4)Sm
20
作者 Jun-Chen Chen Mei-Xuan Li +4 位作者 Zhi-Yang Yu Zhao-Yuan Meng Cheng Wang Zhi-Zheng Yang Hui-Yuan Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第1期348-360,共13页
Due to the significant differences in the formation temperature and crystal structure between the primaryα-Mg and eutecticβ-Mg_(17)Al_(12),it is a great challenge to achieve simultaneous refinement of the primary an... Due to the significant differences in the formation temperature and crystal structure between the primaryα-Mg and eutecticβ-Mg_(17)Al_(12),it is a great challenge to achieve simultaneous refinement of the primary and eutectic phases in Mg-Al based alloys via heterogeneous nucleation.Surprisingly,we found that theα-Mg andβ-Mg_(17)Al_(12) in the AZ80 alloy can be simultaneously refined after 0.2 wt.%Sm addition,with the grain size decreasing from∼217±15μm to∼170±10μm and theβ-Mg_(17)Al_(12) morphology changing from a typical continuous network to a nod-like or spherical structure.The simultaneous refinement mechanism is investigated through solidification simulation,transmission electron microscopy(TEM),and differential thermal analysis(DTA).In the AZ80-0.2Sm alloy,many Al8Mn4Sm particles can be observed near the center of theα-Mg grains or inside theβ-Mg_(17)Al_(12).Crystallographic calculations further reveal that the Al8Mn4Sm has good crystallographic matching with both theα-Mg andβ-Mg_(17)Al_(12),so it possesses the potency to serve as heterogeneous nucleation sites for both phases.The promoted heterogeneous nucleation on the Al8Mn4Sm decreases the undercooling required by the nucleation of the primary and eutectic phases,which enhances the heterogeneous nucleation rate,thus causing the simultaneous refinement of theα-Mg andβ-Mg_(17)Al_(12).The orientation relationships between the Al8Mn4Sm and Mg/Mg_(17)Al_(12) are identified,which are[1210]_(Mg)//[010]_(Al8Mn4Sm),(1010)_(Mg)//(301)_(Al8Mn4Sm) and[112]_(Mg_(17)Al_(12))//[010]_(Al8Mn4Sm),(110)_(Mg_(17)Al_(12))//(301)_(Al8Mn4Sm),respectively.Furthermore,the refinement of theβ-Mg_(17)Al_(12) accelerates its dissolution during the solution treatment,which is beneficial for cost saving in industrial applications.Other Al8Mn4RE compounds such as Al8Mn4Y might have the same positive effect on the simultaneous refinement due to the similar physicochemical properties of rare earth elements.This work not only proves the possibility of simultaneously refining the primary and eutectic phases in Mg-Al based alloys via heterogeneous nucleation,but also provides new insights into the development of refiners for cast Mg alloys. 展开更多
关键词 Magnesium alloys Microstructure refinement Primaryα-Mg Eutecticβ-Mg_(17)Al_(12) Rare earth Heterogeneous nucleation
下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部