Loop-mediated isothermal amplification (LAMP) is a novel nucleic acid amplification method, which amplifies DNA with high specificity, sensitivity, rapidity and efficiency under isothermal conditions using a set of fo...Loop-mediated isothermal amplification (LAMP) is a novel nucleic acid amplification method, which amplifies DNA with high specificity, sensitivity, rapidity and efficiency under isothermal conditions using a set of four specially designed primers and a Bst DNA polymerase with strand displacement activity. The basic principle, characteristics, development of LAMP and its applications are summarized in this article.展开更多
Mercury is a threatening pollutant in food,herein,we developed a Tb^(3+)-nucleic acid probe-based label-free assay for mix-and-read,rapid detection of mercury pollution.The assay utilized the feature of light-up fluor...Mercury is a threatening pollutant in food,herein,we developed a Tb^(3+)-nucleic acid probe-based label-free assay for mix-and-read,rapid detection of mercury pollution.The assay utilized the feature of light-up fluorescence of terbium ions(Tb^(3+))via binding with single-strand DNA.Mercury ion,Hg^(2+)induced thymine(T)-rich DNA strand to form a double-strand structure(T-Hg^(2+)-T),thus leading to fluorescence reduction.Based on the principle,Hg^(2+)can be quantified based on the fluorescence of Tb^(3+),the limit of detection was 0.0689μmol/L and the linear range was 0.1-6.0μmol/L.Due to the specificity of T-Hg^(2+)-T artificial base pair,the assay could distinguish Hg^(2+)from other metal ions.The recovery rate was ranged in 98.71%-101.34%for detecting mercury pollution in three food samples.The assay is low-cost,separation-free and mix-to-read,thus was a competitive tool for detection of mercury pollution to ensure food safety.展开更多
The early diagnosis of cancer is vital for effective treatment and improved prognosis. Tumor biomarkers, which can be used for the early diagnosis, treatment, and prognostic evaluation of cancer, have emerged as a top...The early diagnosis of cancer is vital for effective treatment and improved prognosis. Tumor biomarkers, which can be used for the early diagnosis, treatment, and prognostic evaluation of cancer, have emerged as a topic of intense research interest in recent years. Nucleic acid, as a type of tumor biomarker, contains vital genetic information, which is of great significance for the occurrence and development of cancer. Currently, living cell nucleic acid probes, which enable the in situ imaging and dynamic monitoring of nucleic acids, have become a rapidly developing field. This review focuses on living cell nucleic acid probes that can be used for the early diagnosis of tumors. We describe the fundamental design of the probe in terms of three units and focus on the roles of different nanomaterials in probe delivery.展开更多
Objective To develop a highly sensitive and rapid nucleic acid detection method for the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).Methods We designed,developed,and manufactured an integrated disposab...Objective To develop a highly sensitive and rapid nucleic acid detection method for the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).Methods We designed,developed,and manufactured an integrated disposable device for SARS-CoV-2 nucleic acid extraction and detection.The precision of the liquid transfer and temperature control was tested.A comparison between our device and a commercial kit for SARS-Cov-2 nucleic acid extraction was performed using real-time fluorescence reverse transcription polymerase chain reaction(RT-PCR).The entire process,from SARS-CoV-2 nucleic acid extraction to amplification,was evaluated.Results The precision of the syringe transfer volume was 19.2±1.9μL(set value was 20),32.2±1.6(set value was 30),and 57.2±3.5(set value was 60).Temperature control in the amplification tube was measured at 60.0±0.0℃(set value was 60)and 95.1±0.2℃(set value was 95)respectively.SARS-Cov-2 nucleic acid extraction yield through the device was 7.10×10^(6) copies/mL,while a commercial kit yielded 2.98×10^(6) copies/mL.The mean time to complete the entire assay,from SARS-CoV-2 nucleic acid extraction to amplification detection,was 36 min and 45 s.The detection limit for SARS-CoV-2 nucleic acid was 250 copies/mL.Conclusion The integrated disposable devices may be used for SARS-CoV-2 Point-of-Care test(POCT).展开更多
BACKGROUND Diagnosing and treating abdominal infection in children remains a challenge.Nucleic acid detection,as a rapid and accurate diagnosis tool,has great significance in this field.AIM To investigate the diagnosi...BACKGROUND Diagnosing and treating abdominal infection in children remains a challenge.Nucleic acid detection,as a rapid and accurate diagnosis tool,has great significance in this field.AIM To investigate the diagnosis and treatment of abdominal infection by nucleic acid detection and its possible correlation with psychological stress in children.METHODS A total of 50 pediatric patients diagnosed with abdominal infections between September 2020 and July 2021 were included in this study.Intra-abdominal pus samples were collected for pathogen culture,drug susceptibility testing,and broad-spectrum bacterial nucleic acid testing.Psychological stress,anxiety,depression,and coping styles were assessed using the coping with a disease(CODI)scale.RESULTS Based on susceptibility testing,a regimen of cefazoxime,piperacillin/tazobactam,and metronidazole or ornidazole achieved 100%effectiveness in treating appendicitis.Psychological assessments revealed a positive correlation between pressure level and both anxiety(r=0.324,P=0.001)and depressive disorders(r=0.325,P<0.001).Acceptance and distancing as coping strategies were negatively correlated with anxiety and depression,while negative emotional responses were strongly associated with increased anxiety(r=0.574,P<0.001)and depression(r=0.511,P=0.001).Coping strategies such as illusion and escape showed no significant correlation with emotional outcomes.CONCLUSION Nucleic acid testing helps in the diagnosis of abdominal infections in children,and also focuses on children's mental health.展开更多
An electrochemical DNA sensor based on ferrocene-labelled peptide nucleic acid (PNA-Fc) was prepared. The hybridization between PNA-Fc and DNA immobilized on a gold electrode was examined by cyclic voltammetry (CV...An electrochemical DNA sensor based on ferrocene-labelled peptide nucleic acid (PNA-Fc) was prepared. The hybridization between PNA-Fc and DNA immobilized on a gold electrode was examined by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). PNA-Fc shows a good electrochemically activity and has a redox potential of 170 mV verus Ag/AgCl electrode after hybridization, representing the characteristic of ferrocene/ferrocenium (Fc/Fc+) transformation. The results illustrate that PNA-Fe can be used as an effective electrochemical DNA probe sensor.展开更多
[Objective] The aim of this study was to provide basis for deeply understanding the diapause mechanism of Papilio memnon L. [Method] RNA and DNA content of non-diapause pupae, diapause pupae and eclosion-adult from di...[Objective] The aim of this study was to provide basis for deeply understanding the diapause mechanism of Papilio memnon L. [Method] RNA and DNA content of non-diapause pupae, diapause pupae and eclosion-adult from diapause pupae at different development stages were detected by the colorimetry. [Result] RNA content of non-diapause pupae was 4.614 0-7.946 3 μg/mg, while diapause pupae was 4.326 0-5.885 3 μg/mg and eclosion-adult from diapause pupae was 20.779 3 μg/mg at initial stage. DNA content of non-diapause pupae was 0.448 7-0.535 0 μg/mg, while diapause pupae was 0.452 0-0.828 3 μg/mg and eclosion-adult from diapause pupae was 1.727 0 μg/mg at initial stage. [Conclusion] The nucleic acid content and change is related to the development stage.展开更多
Real-time PCR is a closed DNA amplification system that skillfully integrates biochemical, photoelectric and computer techniques. Fluorescence data acquired once per cycle provides rapid absolute quantification of ini...Real-time PCR is a closed DNA amplification system that skillfully integrates biochemical, photoelectric and computer techniques. Fluorescence data acquired once per cycle provides rapid absolute quantification of initial template copy numbers as PCR products are generated. This technique significantly simplifies and accelerates the process of producing reproducible quantification of nucleic acid molecules. It not only is a sensitive, accurate and rapid quantitative method, but it also provides an easier way to calculate the absolute starting copy number of nucleic acid molecules to be tested. Together with molecular bio-techniques, like microarray, real-time PCR will play a very important role in many aspects of molecular life science such as functional gene analysis and disease molecular diagnostics. This review introduces the detailed principles and application of the real-time PCR technique, describes a recently developed system for exact quantification of AUX/IAA genes In Arabidopsis, and discusses the problems with the real-time PCR process.展开更多
The recent pneumonia outbreak caused by a novel coronavirus(SARS-CoV-2)is posing a great threat to global public health.Therefore,rapid and accurate identification of pathogenic viruses plays a vital role in selecting...The recent pneumonia outbreak caused by a novel coronavirus(SARS-CoV-2)is posing a great threat to global public health.Therefore,rapid and accurate identification of pathogenic viruses plays a vital role in selecting appropriate treatments,saving people's lives and preventing epidemics.It is important to establish a quick standard diagnostic test for the detection of the infectious disease(COVID-19)to prevent subsequent secondary spread.Polymerase chain reaction(PCR)is regarded as a gold standard test for the molecular diagnosis of viral and bacterial infections with high sensitivity and specificity.Isothermal nucleic acid amplification is considered to be a highly promising candidate method due to its fundamental advantage in quick procedure time at constant temperature without thermocycler opera-tion.A variety of improved or new approaches also have been developed.This review summarizes the currently available detection methods for coronavirus nucleic acid.It is anticipated that this will assist researchers and clinicians in developing better techniques for timely and effective detection of coro-navirus infection.展开更多
Despite recent advances in surgical techniques and perioperative management, the prognosis of pancreatic cancer(PCa) remains extremely poor. To provide optimal treatment for each patient with Pca, superior biomarkers ...Despite recent advances in surgical techniques and perioperative management, the prognosis of pancreatic cancer(PCa) remains extremely poor. To provide optimal treatment for each patient with Pca, superior biomarkers are urgently needed in all phases of management from early detection to staging, treatment monitoring, and prognosis. In the blood of patients with cancer, circulating tumor cells(CTCs) and cell-free nucleic acids(cf NAs), such as DNA, m RNA, and noncoding RNA have been recognized. In the recent years, their presence in the blood has encouraged researchers to investigate their potential use as novel blood biomarkers, and numerous studies have demonstrated their potential clinical utility as a biomarker for certain types of cancer. This concept, called "liquid biopsy" has been focused on as a less invasive, alternative approach to cancer tissue biopsy for obtaining genetic and epigenetic aberrations that contribute to oncogenesis and cancer progression. In this article, we review the available literature on CTCs and cfN As in patients with cancer, particularly focusing on PCa, and discuss future perspectives in this field.展开更多
Despite major achievements in the treatment ofchronic hepatitis C with the combination ofinterferons and the nucleoside analog ribavirin themajority of patients with chronic hepatitis C virus(HCV) infection cannot be ...Despite major achievements in the treatment ofchronic hepatitis C with the combination ofinterferons and the nucleoside analog ribavirin themajority of patients with chronic hepatitis C virus(HCV) infection cannot be treated effectively.Toimprove this response rate we used antisensetechnologies to inhibit HCV translation as possibleadditional option for experimental treatment.Antisense oligodeoxynucleotides(ODN) are展开更多
Circulating free nucleic acids; cell free DNA and circulating micro-RNA, are found in the plasma of patients with hematologic and solid malignancies at levels higher than that of healthy individuals. In patients with ...Circulating free nucleic acids; cell free DNA and circulating micro-RNA, are found in the plasma of patients with hematologic and solid malignancies at levels higher than that of healthy individuals. In patients with hematologic malignancy cell free DNA reflects the underlying tumor mutational profile, whilst micro-RNAs reflect genetic interference mechanisms within a tumor and potentially the surrounding microenvironment and immune effector cells. These circulating nucleic acids offer a potentially simple, non-invasive, repeatable analysis that can aid in diagnosis, prognosis and therapeutic decisions in cancer treatment.展开更多
AIM To clone expressed genes associated withrepair of irradiation-damaged mice intestinalgland cells treated by small intestinal RNA,andto explore the molecular mechanism ofexogenous nucleic acids improving repair ofi...AIM To clone expressed genes associated withrepair of irradiation-damaged mice intestinalgland cells treated by small intestinal RNA,andto explore the molecular mechanism ofexogenous nucleic acids improving repair ofintestinal crypt.METHODS The animal mode of test group andcontrol group was established,forty-five micebeing irradiated by γ ray were treated with smallintestinal RNA as test group,forty mice beingirradiated by γ ray were treated withphysiological saline as control group,five micewithout irradiation were used as normal control,their jejunal specimens were collectedrespectively at 6h,12h,24h,4d and 8d afterirradiation.Then by using LD-PCR based onsubtractive hybridization,these gene fragmentsdifferentially expressed between test group andcontrol group were obtained,and then werecloned into T vectors as well as beingsequenced.Obtained sequences were screenedagainst.GeneBank,if being new sequences,they were submitted to GeneBank.RESULTS Ninety clones were associated withrepair of irradiation-damaged intestinal glandcells treated by intestinal RNA.These clonesfrom test group of 6h,12h,24h,4d and 8dwere respectively 18,22,25,13,12.By screening against GeneBank,18 of which werenew sequences,the others were dramaticallysimilar to the known sequences,mainly similarto hsp,Nmi,Dutt1,alkaline phosphatase,homeobox,anti-CEA ScFv antibody,arginine/serine kinase and BMP-4,repA.Eighteen genefragments were new sequences,their acceptnumbers in GeneBank were respectivelyAF240164-AF240181.CONCLUSION Ninety clones were obtained tobe associated with repair of irradiation-damagedmice intestinal gland cells treated by smallintestinal RNA,which may be related toabnormal expression of genes and matchedproteins of hsp,Nmi,Duttl,Na,K-ATPase,alkalineph-osphatase,glkA,single strandedreplicative centromeric gene as well as 18 newsequences.展开更多
Hepatocellular carcinoma(HCC), with its high incidence and mortality rate, is one of the most common malignant tumors. Despite recent development of a diagnostic and treatment method, the prognosis of HCC remains poor...Hepatocellular carcinoma(HCC), with its high incidence and mortality rate, is one of the most common malignant tumors. Despite recent development of a diagnostic and treatment method, the prognosis of HCC remains poor. Therefore, to provide optimal treatment for each patient with HCC, more precise and effective biomarkers are urgently needed which could facilitate a more detailed individualized decision-making during HCC treatment, including the following; risk assessment, early cancer detection, prediction of treatment or prognostic outcome. In the blood of cancer patients, accumulating evidence about circulating tumor cells and cell-free nucleic acids has suggested their potent clinical utilities as novel biomarker. This concept, so-called "liquid biopsy" is widely known as an alternative approach to cancer tissue biopsy. This method might facilitate a more sensitive diagnosis and better decision-making by obtaining genetic and epigenetic aberrations that are closely associated with cancer initiation and progression. In this article, we review recent developments based on the available literature on both circulating tumor cells and cell-free nucleic acids in cancer patients, especially focusing on Hepatocellular carcinoma.展开更多
Two new copper complexes based on 2-naphthoxyacetic acid ligand, namely [Cu(L)2(CH3CN)]2(1) and [Cu(L)(1,10-phen)2](2), where L = 2-naphthoxyacetic acid and 1,10-phen = 1,10-phenanthroline, were obtained by hydrotherm...Two new copper complexes based on 2-naphthoxyacetic acid ligand, namely [Cu(L)2(CH3CN)]2(1) and [Cu(L)(1,10-phen)2](2), where L = 2-naphthoxyacetic acid and 1,10-phen = 1,10-phenanthroline, were obtained by hydrothermal reaction and characterized by single-crystal X-ray diffraction. The binuclear complex 1 and mononuclear complex 2 belong to space group C2/c and P■, respectively. The binding properties of the two compounds with ct-DNA were investigated by UV-Vis and fluorescence spectra. The two compounds could bind with ct-DNA through interactions. Compound 2 displays stronger binding ability in the reaction with ct-DNA.展开更多
Nucleic acid-based bioactive substances have recently emerged as a new class of nextgeneration therapeutics, but their development has been limited by their relatively weakdelivery into target cells. Cationic liposome...Nucleic acid-based bioactive substances have recently emerged as a new class of nextgeneration therapeutics, but their development has been limited by their relatively weakdelivery into target cells. Cationic liposomes have been studied as a means to enhance thestability of nucleic acid therapeutics in the bloodstream and improve their cellular delivery.As nucleic acid therapeutics, siRNA and plasmid DNA have been extensively tested fordelivery using cationic liposomes. This review discusses recent progress in the applicationof cationic liposomes for the delivery of nucleic acid therapeutics.展开更多
To improve the clinical outcomes of cancer patients, early detection and accurate monitoring of diseases are necessary. Numerous genetic and epigenetic alterations contribute to oncogenesis and cancer progression, and...To improve the clinical outcomes of cancer patients, early detection and accurate monitoring of diseases are necessary. Numerous genetic and epigenetic alterations contribute to oncogenesis and cancer progression, and analyses of these changes have been increasingly utilized for diagnostic, prognostic and therapeutic purposes in malignant diseases including gastric cancer (GC). Surgical and/or biopsy specimens are generally used to understand the tumor-associated alterations; however, those approaches cannot always be performed because of their invasive characteristics and may fail to reflect current tumor dynamics and drug sensitivities, which may change during the therapeutic process. Therefore, the importance of developing a non-invasive biomarker with the ability to monitor real-time tumor dynamics should be emphasized. This concept, so called “liquid biopsy”, would provide an ideal therapeutic strategy for an individual cancer patient and would facilitate the development of “tailor-made” cancer management programs. In the blood of cancer patients, the presence and potent utilities of circulating tumor cells (CTCs) and cell-free nucleic acids (cfNAs) such as DNA, mRNA and microRNA have been recognized, and their clinical relevance is attracting considerable attention. In this review, we discuss recent developments in this research field as well as the relevance and future perspectives of CTCs and cfNAs in cancer patients, especially focusing on GC.展开更多
基金General Administrationof Quality Supervision, Inspection and Quarantine of China(HK001-2007).
文摘Loop-mediated isothermal amplification (LAMP) is a novel nucleic acid amplification method, which amplifies DNA with high specificity, sensitivity, rapidity and efficiency under isothermal conditions using a set of four specially designed primers and a Bst DNA polymerase with strand displacement activity. The basic principle, characteristics, development of LAMP and its applications are summarized in this article.
基金financially supported by National Natural Science Foundation of China(22074100)the Young Elite Scientist Sponsorship Program by CAST(YESS20200036)+3 种基金the Researchers Supporting Project Number RSP-2021/138King Saud University,Riyadh,Saudi ArabiaTechnological Innovation R&D Project of Chengdu City(2019-YF05-31702266-SN)Sichuan University-Panzhihua City joint Project(2020CDPZH-5)。
文摘Mercury is a threatening pollutant in food,herein,we developed a Tb^(3+)-nucleic acid probe-based label-free assay for mix-and-read,rapid detection of mercury pollution.The assay utilized the feature of light-up fluorescence of terbium ions(Tb^(3+))via binding with single-strand DNA.Mercury ion,Hg^(2+)induced thymine(T)-rich DNA strand to form a double-strand structure(T-Hg^(2+)-T),thus leading to fluorescence reduction.Based on the principle,Hg^(2+)can be quantified based on the fluorescence of Tb^(3+),the limit of detection was 0.0689μmol/L and the linear range was 0.1-6.0μmol/L.Due to the specificity of T-Hg^(2+)-T artificial base pair,the assay could distinguish Hg^(2+)from other metal ions.The recovery rate was ranged in 98.71%-101.34%for detecting mercury pollution in three food samples.The assay is low-cost,separation-free and mix-to-read,thus was a competitive tool for detection of mercury pollution to ensure food safety.
基金supported by the National Natural Science Foundation of China (52373161,51973217)Jilin Province Science and Technology Development Program (20200201330JC, 20200201075JC, JJKH20201029KJ)The First Hospital of Jilin University Cross Disciplinary Program (2022YYGFZJC002)。
文摘The early diagnosis of cancer is vital for effective treatment and improved prognosis. Tumor biomarkers, which can be used for the early diagnosis, treatment, and prognostic evaluation of cancer, have emerged as a topic of intense research interest in recent years. Nucleic acid, as a type of tumor biomarker, contains vital genetic information, which is of great significance for the occurrence and development of cancer. Currently, living cell nucleic acid probes, which enable the in situ imaging and dynamic monitoring of nucleic acids, have become a rapidly developing field. This review focuses on living cell nucleic acid probes that can be used for the early diagnosis of tumors. We describe the fundamental design of the probe in terms of three units and focus on the roles of different nanomaterials in probe delivery.
基金supported by National Key R&D Program of China[2021YFC2301103 and 2022YFE0202600]Shenzhen Science and Technology Program[JSGG20220606142605011].
文摘Objective To develop a highly sensitive and rapid nucleic acid detection method for the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).Methods We designed,developed,and manufactured an integrated disposable device for SARS-CoV-2 nucleic acid extraction and detection.The precision of the liquid transfer and temperature control was tested.A comparison between our device and a commercial kit for SARS-Cov-2 nucleic acid extraction was performed using real-time fluorescence reverse transcription polymerase chain reaction(RT-PCR).The entire process,from SARS-CoV-2 nucleic acid extraction to amplification,was evaluated.Results The precision of the syringe transfer volume was 19.2±1.9μL(set value was 20),32.2±1.6(set value was 30),and 57.2±3.5(set value was 60).Temperature control in the amplification tube was measured at 60.0±0.0℃(set value was 60)and 95.1±0.2℃(set value was 95)respectively.SARS-Cov-2 nucleic acid extraction yield through the device was 7.10×10^(6) copies/mL,while a commercial kit yielded 2.98×10^(6) copies/mL.The mean time to complete the entire assay,from SARS-CoV-2 nucleic acid extraction to amplification detection,was 36 min and 45 s.The detection limit for SARS-CoV-2 nucleic acid was 250 copies/mL.Conclusion The integrated disposable devices may be used for SARS-CoV-2 Point-of-Care test(POCT).
基金Supported by Zhangjiakou Science and Technology Tackling Program,No.2021099D。
文摘BACKGROUND Diagnosing and treating abdominal infection in children remains a challenge.Nucleic acid detection,as a rapid and accurate diagnosis tool,has great significance in this field.AIM To investigate the diagnosis and treatment of abdominal infection by nucleic acid detection and its possible correlation with psychological stress in children.METHODS A total of 50 pediatric patients diagnosed with abdominal infections between September 2020 and July 2021 were included in this study.Intra-abdominal pus samples were collected for pathogen culture,drug susceptibility testing,and broad-spectrum bacterial nucleic acid testing.Psychological stress,anxiety,depression,and coping styles were assessed using the coping with a disease(CODI)scale.RESULTS Based on susceptibility testing,a regimen of cefazoxime,piperacillin/tazobactam,and metronidazole or ornidazole achieved 100%effectiveness in treating appendicitis.Psychological assessments revealed a positive correlation between pressure level and both anxiety(r=0.324,P=0.001)and depressive disorders(r=0.325,P<0.001).Acceptance and distancing as coping strategies were negatively correlated with anxiety and depression,while negative emotional responses were strongly associated with increased anxiety(r=0.574,P<0.001)and depression(r=0.511,P=0.001).Coping strategies such as illusion and escape showed no significant correlation with emotional outcomes.CONCLUSION Nucleic acid testing helps in the diagnosis of abdominal infections in children,and also focuses on children's mental health.
文摘An electrochemical DNA sensor based on ferrocene-labelled peptide nucleic acid (PNA-Fc) was prepared. The hybridization between PNA-Fc and DNA immobilized on a gold electrode was examined by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). PNA-Fc shows a good electrochemically activity and has a redox potential of 170 mV verus Ag/AgCl electrode after hybridization, representing the characteristic of ferrocene/ferrocenium (Fc/Fc+) transformation. The results illustrate that PNA-Fe can be used as an effective electrochemical DNA probe sensor.
基金Supported by the International Advanced Forestry Science and Technology Project Imported by State Forestry Administration (2005-4-59 and 2008-4-68)~~
文摘[Objective] The aim of this study was to provide basis for deeply understanding the diapause mechanism of Papilio memnon L. [Method] RNA and DNA content of non-diapause pupae, diapause pupae and eclosion-adult from diapause pupae at different development stages were detected by the colorimetry. [Result] RNA content of non-diapause pupae was 4.614 0-7.946 3 μg/mg, while diapause pupae was 4.326 0-5.885 3 μg/mg and eclosion-adult from diapause pupae was 20.779 3 μg/mg at initial stage. DNA content of non-diapause pupae was 0.448 7-0.535 0 μg/mg, while diapause pupae was 0.452 0-0.828 3 μg/mg and eclosion-adult from diapause pupae was 1.727 0 μg/mg at initial stage. [Conclusion] The nucleic acid content and change is related to the development stage.
文摘Real-time PCR is a closed DNA amplification system that skillfully integrates biochemical, photoelectric and computer techniques. Fluorescence data acquired once per cycle provides rapid absolute quantification of initial template copy numbers as PCR products are generated. This technique significantly simplifies and accelerates the process of producing reproducible quantification of nucleic acid molecules. It not only is a sensitive, accurate and rapid quantitative method, but it also provides an easier way to calculate the absolute starting copy number of nucleic acid molecules to be tested. Together with molecular bio-techniques, like microarray, real-time PCR will play a very important role in many aspects of molecular life science such as functional gene analysis and disease molecular diagnostics. This review introduces the detailed principles and application of the real-time PCR technique, describes a recently developed system for exact quantification of AUX/IAA genes In Arabidopsis, and discusses the problems with the real-time PCR process.
基金financial support from the National Natural Science Foundation of China(Grant 81973281)the Fundamental Research Funds for the Central Universities(2019FZA7017)Leading Talent of“Ten Thousand Plan”-National High-Level Talents SpecialSupport Plan。
文摘The recent pneumonia outbreak caused by a novel coronavirus(SARS-CoV-2)is posing a great threat to global public health.Therefore,rapid and accurate identification of pathogenic viruses plays a vital role in selecting appropriate treatments,saving people's lives and preventing epidemics.It is important to establish a quick standard diagnostic test for the detection of the infectious disease(COVID-19)to prevent subsequent secondary spread.Polymerase chain reaction(PCR)is regarded as a gold standard test for the molecular diagnosis of viral and bacterial infections with high sensitivity and specificity.Isothermal nucleic acid amplification is considered to be a highly promising candidate method due to its fundamental advantage in quick procedure time at constant temperature without thermocycler opera-tion.A variety of improved or new approaches also have been developed.This review summarizes the currently available detection methods for coronavirus nucleic acid.It is anticipated that this will assist researchers and clinicians in developing better techniques for timely and effective detection of coro-navirus infection.
文摘Despite recent advances in surgical techniques and perioperative management, the prognosis of pancreatic cancer(PCa) remains extremely poor. To provide optimal treatment for each patient with Pca, superior biomarkers are urgently needed in all phases of management from early detection to staging, treatment monitoring, and prognosis. In the blood of patients with cancer, circulating tumor cells(CTCs) and cell-free nucleic acids(cf NAs), such as DNA, m RNA, and noncoding RNA have been recognized. In the recent years, their presence in the blood has encouraged researchers to investigate their potential use as novel blood biomarkers, and numerous studies have demonstrated their potential clinical utility as a biomarker for certain types of cancer. This concept, called "liquid biopsy" has been focused on as a less invasive, alternative approach to cancer tissue biopsy for obtaining genetic and epigenetic aberrations that contribute to oncogenesis and cancer progression. In this article, we review the available literature on CTCs and cfN As in patients with cancer, particularly focusing on PCa, and discuss future perspectives in this field.
文摘Despite major achievements in the treatment ofchronic hepatitis C with the combination ofinterferons and the nucleoside analog ribavirin themajority of patients with chronic hepatitis C virus(HCV) infection cannot be treated effectively.Toimprove this response rate we used antisensetechnologies to inhibit HCV translation as possibleadditional option for experimental treatment.Antisense oligodeoxynucleotides(ODN) are
文摘Circulating free nucleic acids; cell free DNA and circulating micro-RNA, are found in the plasma of patients with hematologic and solid malignancies at levels higher than that of healthy individuals. In patients with hematologic malignancy cell free DNA reflects the underlying tumor mutational profile, whilst micro-RNAs reflect genetic interference mechanisms within a tumor and potentially the surrounding microenvironment and immune effector cells. These circulating nucleic acids offer a potentially simple, non-invasive, repeatable analysis that can aid in diagnosis, prognosis and therapeutic decisions in cancer treatment.
基金"211"project fund (No.98X207)National Natural Science Foundation of China,No.38970279
文摘AIM To clone expressed genes associated withrepair of irradiation-damaged mice intestinalgland cells treated by small intestinal RNA,andto explore the molecular mechanism ofexogenous nucleic acids improving repair ofintestinal crypt.METHODS The animal mode of test group andcontrol group was established,forty-five micebeing irradiated by γ ray were treated with smallintestinal RNA as test group,forty mice beingirradiated by γ ray were treated withphysiological saline as control group,five micewithout irradiation were used as normal control,their jejunal specimens were collectedrespectively at 6h,12h,24h,4d and 8d afterirradiation.Then by using LD-PCR based onsubtractive hybridization,these gene fragmentsdifferentially expressed between test group andcontrol group were obtained,and then werecloned into T vectors as well as beingsequenced.Obtained sequences were screenedagainst.GeneBank,if being new sequences,they were submitted to GeneBank.RESULTS Ninety clones were associated withrepair of irradiation-damaged intestinal glandcells treated by intestinal RNA.These clonesfrom test group of 6h,12h,24h,4d and 8dwere respectively 18,22,25,13,12.By screening against GeneBank,18 of which werenew sequences,the others were dramaticallysimilar to the known sequences,mainly similarto hsp,Nmi,Dutt1,alkaline phosphatase,homeobox,anti-CEA ScFv antibody,arginine/serine kinase and BMP-4,repA.Eighteen genefragments were new sequences,their acceptnumbers in GeneBank were respectivelyAF240164-AF240181.CONCLUSION Ninety clones were obtained tobe associated with repair of irradiation-damagedmice intestinal gland cells treated by smallintestinal RNA,which may be related toabnormal expression of genes and matchedproteins of hsp,Nmi,Duttl,Na,K-ATPase,alkalineph-osphatase,glkA,single strandedreplicative centromeric gene as well as 18 newsequences.
文摘Hepatocellular carcinoma(HCC), with its high incidence and mortality rate, is one of the most common malignant tumors. Despite recent development of a diagnostic and treatment method, the prognosis of HCC remains poor. Therefore, to provide optimal treatment for each patient with HCC, more precise and effective biomarkers are urgently needed which could facilitate a more detailed individualized decision-making during HCC treatment, including the following; risk assessment, early cancer detection, prediction of treatment or prognostic outcome. In the blood of cancer patients, accumulating evidence about circulating tumor cells and cell-free nucleic acids has suggested their potent clinical utilities as novel biomarker. This concept, so-called "liquid biopsy" is widely known as an alternative approach to cancer tissue biopsy. This method might facilitate a more sensitive diagnosis and better decision-making by obtaining genetic and epigenetic aberrations that are closely associated with cancer initiation and progression. In this article, we review recent developments based on the available literature on both circulating tumor cells and cell-free nucleic acids in cancer patients, especially focusing on Hepatocellular carcinoma.
基金supported by the National Natural Science Foundation of China(21101090 and 21561021)
文摘Two new copper complexes based on 2-naphthoxyacetic acid ligand, namely [Cu(L)2(CH3CN)]2(1) and [Cu(L)(1,10-phen)2](2), where L = 2-naphthoxyacetic acid and 1,10-phen = 1,10-phenanthroline, were obtained by hydrothermal reaction and characterized by single-crystal X-ray diffraction. The binuclear complex 1 and mononuclear complex 2 belong to space group C2/c and P■, respectively. The binding properties of the two compounds with ct-DNA were investigated by UV-Vis and fluorescence spectra. The two compounds could bind with ct-DNA through interactions. Compound 2 displays stronger binding ability in the reaction with ct-DNA.
基金This work was supported by Research Settlement Fund for the new faculty of Seoul National University,and grants from Ministry of Science,ICT and Future Planning(No.2013035166)from Business for Cooperative R&D between Industry,Academy,and Research Institute funded Korea Small and Medium Business Administration in 2012(No.C0010962).
文摘Nucleic acid-based bioactive substances have recently emerged as a new class of nextgeneration therapeutics, but their development has been limited by their relatively weakdelivery into target cells. Cationic liposomes have been studied as a means to enhance thestability of nucleic acid therapeutics in the bloodstream and improve their cellular delivery.As nucleic acid therapeutics, siRNA and plasmid DNA have been extensively tested fordelivery using cationic liposomes. This review discusses recent progress in the applicationof cationic liposomes for the delivery of nucleic acid therapeutics.
文摘To improve the clinical outcomes of cancer patients, early detection and accurate monitoring of diseases are necessary. Numerous genetic and epigenetic alterations contribute to oncogenesis and cancer progression, and analyses of these changes have been increasingly utilized for diagnostic, prognostic and therapeutic purposes in malignant diseases including gastric cancer (GC). Surgical and/or biopsy specimens are generally used to understand the tumor-associated alterations; however, those approaches cannot always be performed because of their invasive characteristics and may fail to reflect current tumor dynamics and drug sensitivities, which may change during the therapeutic process. Therefore, the importance of developing a non-invasive biomarker with the ability to monitor real-time tumor dynamics should be emphasized. This concept, so called “liquid biopsy”, would provide an ideal therapeutic strategy for an individual cancer patient and would facilitate the development of “tailor-made” cancer management programs. In the blood of cancer patients, the presence and potent utilities of circulating tumor cells (CTCs) and cell-free nucleic acids (cfNAs) such as DNA, mRNA and microRNA have been recognized, and their clinical relevance is attracting considerable attention. In this review, we discuss recent developments in this research field as well as the relevance and future perspectives of CTCs and cfNAs in cancer patients, especially focusing on GC.