[ Objective] The aim of this study was to investigate the construction and identification of siRNA expression vector targeting nucleocapsid protein N gone of PRRSV. [Method] Three siRNA oligonucleotides targeting nucl...[ Objective] The aim of this study was to investigate the construction and identification of siRNA expression vector targeting nucleocapsid protein N gone of PRRSV. [Method] Three siRNA oligonucleotides targeting nucleocapsid protein N gone sequence of PRRSV were designed or synthesized, and then inserted into CMV promoter downstream to clone into pSilencer 4,1 -CMV eukaryotic expression vector. The recombinant expression vector was identified by enzyme digestion and DNA sequencing. [ Result] The results showed that the siRNA interference recombinant plasmid vector pSilencer-N targeting nucleocapsid protein gone expression had been successfully constructed. [ Conclusion] This study lays a foundation for studies on the controlling PRRSV by RNA interference technique .展开更多
为了建立高效、灵敏的猪流行性腹泻病毒(PEDV)检测方法,本研究从GenBank数据库中获取PEDV N基因序列,扩增出PEDV N基因标准质粒,并在N基因的保守区域内设计了一对特异性荧光定量引物,成功建立了SYBR Green I实时荧光定量PCR检测方法。...为了建立高效、灵敏的猪流行性腹泻病毒(PEDV)检测方法,本研究从GenBank数据库中获取PEDV N基因序列,扩增出PEDV N基因标准质粒,并在N基因的保守区域内设计了一对特异性荧光定量引物,成功建立了SYBR Green I实时荧光定量PCR检测方法。经过一系列试验表明,该检测方法线性关系良好,R^(2)值为0.99;特异性强,敏感性高,最低可检测至2.23 copies/μL,比普通PCR灵敏约100倍;重复性好,组内变异系数为0.25%~0.43%,组间变异系数为0.67%~0.97%;对于各地区96份临床样品检测出PEDV阳性率为25%。本研究建立的实时荧光定量PCR检测方法为PEDV的临床诊断、流行病学调查以及定量研究提供了有效的检测工具。展开更多
他莫昔芬(tamoxifen,TAM)作为雌激素受体阳性(estrogen receptor,ER+)乳腺癌的一线化疗药物使大多数患者受益,但原发性和继发性耐药问题严重影响临床治疗效果。深入研究ER+乳腺癌TAM耐药机制,改善治疗效果是当前亟待解决的问题。抑癌因...他莫昔芬(tamoxifen,TAM)作为雌激素受体阳性(estrogen receptor,ER+)乳腺癌的一线化疗药物使大多数患者受益,但原发性和继发性耐药问题严重影响临床治疗效果。深入研究ER+乳腺癌TAM耐药机制,改善治疗效果是当前亟待解决的问题。抑癌因子NDRG2(N-myc downstream regulated gene 2,NDRG2)在肿瘤发生发展中发挥重要作用,但是否参与ER+乳腺癌TAM耐药尚不清楚。本研究旨在探明NDRG2在ER+乳腺癌TAM耐药中发挥的作用和机制。通过RT-PCR与免疫印迹分析对比TAM敏感型和耐药型ER+乳腺癌细胞发现,NDRG 2的mRNA转录水平和蛋白质翻译水平在TAM耐药细胞中表达显著下调,且与耐药能力负相关(P<0.001);CCK-8细胞毒性实验和软琼脂克隆形成实验证实,在耐药细胞中过表达NDRG2可显著降低TAM药物半抑制浓度IC 50和软琼脂克隆形成率(P<0.001),逆转耐药表型。分子机制上,X-box结合蛋白1(X-box binding protein 1,XBP1)mRNA剪切实验与内质网相关降解(endoplasmic-reticulum associated degradation,ERAD)报告蛋白的结果显示,过表达NDRG2可增强耐药细胞中剪切型XBP1s mRNA转录与ERAD报告蛋白CD3ε-YFP表达(P<0.001),引发耐药细胞内质网强应激反应;免疫印迹检测结果显示,过表达NDRG2可显著提高耐药细胞中内质网应激感受器肌醇需要激酶1α(inositol requiring enzyme 1,IRE1α)的磷酸化水平及其下游因子,例如内质网EIP辅助因子(endoplasmic reticulum-localized DnaJ 4,ERdj4)、PKR蛋白激酶的细胞抑制剂(cellular Inhibitor of the PKR protein kinase,P58 IPK)、α甘露糖苷酶样应激蛋白(er degradation enhancingαmannosidase likeprotein,EDEM)和蛋白质二硫键异构酶家族A成员5(protein disulfide isomerase family a member 5,PDIA5)的表达水平(P<0.001)。小鼠异种移植瘤研究进一步证实,在耐药细胞中过表达NDRG2可增强TAM治疗效果,显著抑制耐药移植瘤生长(P<0.001)。以上研究结果表明,通过提高耐药细胞中NDRG2表达,增强TAM治疗引发的内质网强烈应激,可逆转ER+乳腺癌细胞耐药性,改善TAM治疗效果。研究结果为解决ER+乳腺癌TAM耐药问题提供了新的思路和有价值的潜在药物靶点。展开更多
Leaf senescence is an orderly and highly coordinated process,and finely regulated by ethylene and nitrogen(N),ultimately affecting grain yield and nitrogen-use efficiency(NUE).However,the underlying regulatory mechani...Leaf senescence is an orderly and highly coordinated process,and finely regulated by ethylene and nitrogen(N),ultimately affecting grain yield and nitrogen-use efficiency(NUE).However,the underlying regulatory mechanisms on the crosstalk between ethylene-and N-regulated leaf senescence remain a mystery in maize.In this study,ethylene biosynthesis gene ZmACS7 overexpressing(OE-ZmACS7)plants were used to study the role of ethylene regulating leaf senescence in response to N deficiency,and they exhibited the premature leaf senescence accompanied by increased ethylene release,decreased chlorophyll content and F_v/F_m ratio,and accelerated chloroplast degradation.Then,we investigated the dynamics changes of transcriptome reprogramming underlying ethylene-accelerated leaf senescence in response to N deficiency.The differentially expressed genes(DEGs)involved in chlorophyll biosynthesis were significantly down-regulated,while DEGs involved in chlorophyll degradation and autophagy processes were significantly up-regulated,especially in OE-ZmACS7 plants in response to N deficiency.A gene regulatory network(GRN)was predicted during ethylene-accelerated leaf senescence in response to N deficiency.Three transcription factors(TFs)ZmHSF4,Zmb HLH106,and ZmEREB147 were identified as the key regulatory genes,which targeted chlorophyll biosynthesis gene ZmLES22,chlorophyll degradation gene ZmNYC1,and autophagy-related gene ZmATG5,respectively.Furthermore,ethylene signaling key genes might be located upstream of these TFs,generating the signaling cascade networks during ethylene-accelerated leaf senescence in response to N deficiency.Collectively,these findings improve our molecular knowledge of ethylene-accelerated maize leaf senescence in response to N deficiency,which is promising to improve NUE by manipulating the progress of leaf senescence in maize.展开更多
基金Supported by Based on Cuttingedge technology and research Project of Henan Province(072300430060)The focus of Scientific andTechnological Project of Henan Province(072102130023)Colleges and Universities of Henan Province in Support of TechnologicalInnovation Plan~~
文摘[ Objective] The aim of this study was to investigate the construction and identification of siRNA expression vector targeting nucleocapsid protein N gone of PRRSV. [Method] Three siRNA oligonucleotides targeting nucleocapsid protein N gone sequence of PRRSV were designed or synthesized, and then inserted into CMV promoter downstream to clone into pSilencer 4,1 -CMV eukaryotic expression vector. The recombinant expression vector was identified by enzyme digestion and DNA sequencing. [ Result] The results showed that the siRNA interference recombinant plasmid vector pSilencer-N targeting nucleocapsid protein gone expression had been successfully constructed. [ Conclusion] This study lays a foundation for studies on the controlling PRRSV by RNA interference technique .
文摘他莫昔芬(tamoxifen,TAM)作为雌激素受体阳性(estrogen receptor,ER+)乳腺癌的一线化疗药物使大多数患者受益,但原发性和继发性耐药问题严重影响临床治疗效果。深入研究ER+乳腺癌TAM耐药机制,改善治疗效果是当前亟待解决的问题。抑癌因子NDRG2(N-myc downstream regulated gene 2,NDRG2)在肿瘤发生发展中发挥重要作用,但是否参与ER+乳腺癌TAM耐药尚不清楚。本研究旨在探明NDRG2在ER+乳腺癌TAM耐药中发挥的作用和机制。通过RT-PCR与免疫印迹分析对比TAM敏感型和耐药型ER+乳腺癌细胞发现,NDRG 2的mRNA转录水平和蛋白质翻译水平在TAM耐药细胞中表达显著下调,且与耐药能力负相关(P<0.001);CCK-8细胞毒性实验和软琼脂克隆形成实验证实,在耐药细胞中过表达NDRG2可显著降低TAM药物半抑制浓度IC 50和软琼脂克隆形成率(P<0.001),逆转耐药表型。分子机制上,X-box结合蛋白1(X-box binding protein 1,XBP1)mRNA剪切实验与内质网相关降解(endoplasmic-reticulum associated degradation,ERAD)报告蛋白的结果显示,过表达NDRG2可增强耐药细胞中剪切型XBP1s mRNA转录与ERAD报告蛋白CD3ε-YFP表达(P<0.001),引发耐药细胞内质网强应激反应;免疫印迹检测结果显示,过表达NDRG2可显著提高耐药细胞中内质网应激感受器肌醇需要激酶1α(inositol requiring enzyme 1,IRE1α)的磷酸化水平及其下游因子,例如内质网EIP辅助因子(endoplasmic reticulum-localized DnaJ 4,ERdj4)、PKR蛋白激酶的细胞抑制剂(cellular Inhibitor of the PKR protein kinase,P58 IPK)、α甘露糖苷酶样应激蛋白(er degradation enhancingαmannosidase likeprotein,EDEM)和蛋白质二硫键异构酶家族A成员5(protein disulfide isomerase family a member 5,PDIA5)的表达水平(P<0.001)。小鼠异种移植瘤研究进一步证实,在耐药细胞中过表达NDRG2可增强TAM治疗效果,显著抑制耐药移植瘤生长(P<0.001)。以上研究结果表明,通过提高耐药细胞中NDRG2表达,增强TAM治疗引发的内质网强烈应激,可逆转ER+乳腺癌细胞耐药性,改善TAM治疗效果。研究结果为解决ER+乳腺癌TAM耐药问题提供了新的思路和有价值的潜在药物靶点。
基金funded by the National Natural Science Foundation of China (31871546)China Postdoctoral Science Foundation (2022M720418)。
文摘Leaf senescence is an orderly and highly coordinated process,and finely regulated by ethylene and nitrogen(N),ultimately affecting grain yield and nitrogen-use efficiency(NUE).However,the underlying regulatory mechanisms on the crosstalk between ethylene-and N-regulated leaf senescence remain a mystery in maize.In this study,ethylene biosynthesis gene ZmACS7 overexpressing(OE-ZmACS7)plants were used to study the role of ethylene regulating leaf senescence in response to N deficiency,and they exhibited the premature leaf senescence accompanied by increased ethylene release,decreased chlorophyll content and F_v/F_m ratio,and accelerated chloroplast degradation.Then,we investigated the dynamics changes of transcriptome reprogramming underlying ethylene-accelerated leaf senescence in response to N deficiency.The differentially expressed genes(DEGs)involved in chlorophyll biosynthesis were significantly down-regulated,while DEGs involved in chlorophyll degradation and autophagy processes were significantly up-regulated,especially in OE-ZmACS7 plants in response to N deficiency.A gene regulatory network(GRN)was predicted during ethylene-accelerated leaf senescence in response to N deficiency.Three transcription factors(TFs)ZmHSF4,Zmb HLH106,and ZmEREB147 were identified as the key regulatory genes,which targeted chlorophyll biosynthesis gene ZmLES22,chlorophyll degradation gene ZmNYC1,and autophagy-related gene ZmATG5,respectively.Furthermore,ethylene signaling key genes might be located upstream of these TFs,generating the signaling cascade networks during ethylene-accelerated leaf senescence in response to N deficiency.Collectively,these findings improve our molecular knowledge of ethylene-accelerated maize leaf senescence in response to N deficiency,which is promising to improve NUE by manipulating the progress of leaf senescence in maize.