Background:The nucleotide-binding and oligomerization domain-like receptor protein 3 (NLRP3) inflammasome composed of NLRP3,apoptosis-associated speck-like protein containing CARD (ASC),and caspase-1 is engaged in the...Background:The nucleotide-binding and oligomerization domain-like receptor protein 3 (NLRP3) inflammasome composed of NLRP3,apoptosis-associated speck-like protein containing CARD (ASC),and caspase-1 is engaged in the inflammatory response of many kidney diseases and can be activated by purinergic 2X7 receptor (P2X7R).This study was conducted to explore whether P2X7R plays a pathogenic role in the podocyte damage of obesity-related glomerulopathy (ORG) and whether this role is mediated by the activation ofNLRP3 inflammasome.Methods:A mouse model of ORG was established by high-fat diet feeding.The conditionally immortalized mouse podocytes were cultured with leptin or with leptin and P2X7R antagonist (KN-62 or A438079).The mRNA and protein expression of the P2X7R and NLRP3 inflammasome components including NLRP3,ASC,and caspase-1,as well as the podocyte-associated molecules including nephrin,podocin,and desmin in mouse renal cortex or cultured mouse podocytes were tested by real-time-polymerase chain reaction and Westem blot analysis,respectively.Results:The significantly upregulated expression of P2X7R and NLRP3 inflammasome components and the NLRP3 inflammasome activation were observed in the renal cortex (in fact their location in podocytes was proved by confocal microscopy) of ORG mice in vivo,which were accompanied with the morphological changes of podocyte damage and the expression changes of podocyte-associated molecules.Similar changes in the expression of P2X7R and NLRP3 inflammasome components as well as in the expression ofpodocyte-associated molecules were also observed in the cultured podocyte studies treated by leptin in vitro,and all of the above changes were significantly attenuated by the P2X7R antagonist KN-62 or A438079.Conclusions:P2X7R could trigger the activation ofNLRP3 inflammasome,and the activated P2X7R/NLRP3 inflammasome in podocytes might be involved in the podocyte damage of ORG.展开更多
PANoptosis is a newly identified type of regulated cell death that consists of pyroptosis,apoptosis,and nec roptosis,which simultaneously occur during the pathophysiological process of infectious and inflammatory dise...PANoptosis is a newly identified type of regulated cell death that consists of pyroptosis,apoptosis,and nec roptosis,which simultaneously occur during the pathophysiological process of infectious and inflammatory diseases.Although our previous lite rature mining study suggested that PANoptosis might occur in neuronal ischemia/repe rfusion injury,little experimental research has been reported on the existence of PANoptosis.In this study,we used in vivo and in vitro retinal neuronal models of ischemia/repe rfusion injury to investigate whether PAN optosis-like cell death(simultaneous occurrence of pyroptosis,apo ptosis,and necroptosis)exists in retinal neuronal ischemia/repe rfusion injury.Our results showed that ischemia/repe rfusion injury induced changes in morphological features and protein levels that indicate PANoptosis-like cell death in retinal neurons both in vitro and in vivo.Ischemia/repe rfusion inju ry also significantly upregulated caspase-1,caspase-8,and NLRP3 expression,which are important components of the PANoptosome.These results indicate the existence of PANoptosis-like cell death in ischemia/reperfusion injury of retinal neurons and provide preliminary experimental evidence for future study of this new type of regulated cell death.展开更多
基金grants from the National Natural Science Foundation of China (No.81573745and No.8160140274)Beijing Municipal Natural Science Foundation (No.7172066) Beijing Development Foundation of Traditional Chinese Medicine (QN2016-23).
文摘Background:The nucleotide-binding and oligomerization domain-like receptor protein 3 (NLRP3) inflammasome composed of NLRP3,apoptosis-associated speck-like protein containing CARD (ASC),and caspase-1 is engaged in the inflammatory response of many kidney diseases and can be activated by purinergic 2X7 receptor (P2X7R).This study was conducted to explore whether P2X7R plays a pathogenic role in the podocyte damage of obesity-related glomerulopathy (ORG) and whether this role is mediated by the activation ofNLRP3 inflammasome.Methods:A mouse model of ORG was established by high-fat diet feeding.The conditionally immortalized mouse podocytes were cultured with leptin or with leptin and P2X7R antagonist (KN-62 or A438079).The mRNA and protein expression of the P2X7R and NLRP3 inflammasome components including NLRP3,ASC,and caspase-1,as well as the podocyte-associated molecules including nephrin,podocin,and desmin in mouse renal cortex or cultured mouse podocytes were tested by real-time-polymerase chain reaction and Westem blot analysis,respectively.Results:The significantly upregulated expression of P2X7R and NLRP3 inflammasome components and the NLRP3 inflammasome activation were observed in the renal cortex (in fact their location in podocytes was proved by confocal microscopy) of ORG mice in vivo,which were accompanied with the morphological changes of podocyte damage and the expression changes of podocyte-associated molecules.Similar changes in the expression of P2X7R and NLRP3 inflammasome components as well as in the expression ofpodocyte-associated molecules were also observed in the cultured podocyte studies treated by leptin in vitro,and all of the above changes were significantly attenuated by the P2X7R antagonist KN-62 or A438079.Conclusions:P2X7R could trigger the activation ofNLRP3 inflammasome,and the activated P2X7R/NLRP3 inflammasome in podocytes might be involved in the podocyte damage of ORG.
基金supported by the National Natural Science Foundation of China,Nos.81772134,81971891,82172196,81571939(ail to KX)the Key Laboratory of Emergency and Trauma(Hainan Medical University)of Ministry of Education,No.KLET-202108(to KX)+1 种基金the Fundamental Research Funds for the Central Universities of Central South University of China,No.2020zzts218(to WTY)Hunan Provincial Innovation Foundation for Postgraduate of China,No.CX20200116(to WTY)。
文摘PANoptosis is a newly identified type of regulated cell death that consists of pyroptosis,apoptosis,and nec roptosis,which simultaneously occur during the pathophysiological process of infectious and inflammatory diseases.Although our previous lite rature mining study suggested that PANoptosis might occur in neuronal ischemia/repe rfusion injury,little experimental research has been reported on the existence of PANoptosis.In this study,we used in vivo and in vitro retinal neuronal models of ischemia/repe rfusion injury to investigate whether PAN optosis-like cell death(simultaneous occurrence of pyroptosis,apo ptosis,and necroptosis)exists in retinal neuronal ischemia/repe rfusion injury.Our results showed that ischemia/repe rfusion injury induced changes in morphological features and protein levels that indicate PANoptosis-like cell death in retinal neurons both in vitro and in vivo.Ischemia/repe rfusion inju ry also significantly upregulated caspase-1,caspase-8,and NLRP3 expression,which are important components of the PANoptosome.These results indicate the existence of PANoptosis-like cell death in ischemia/reperfusion injury of retinal neurons and provide preliminary experimental evidence for future study of this new type of regulated cell death.