In this work, we have applied the translation invariant shell model with number of quanta of excitations N=2,4,6,8and 10 to define the ground-state eigenenergies and their corresponding normalized eigenstates, the roo...In this work, we have applied the translation invariant shell model with number of quanta of excitations N=2,4,6,8and 10 to define the ground-state eigenenergies and their corresponding normalized eigenstates, the root mean-square radius, and the magnetic dipole moment of the nucleus 6Li. We have computed the necessary two-particle orbital fractional parentage coefficients for nuclei with mass number A=6and number of quanta of excitations N=10, which are not available in the literature. In addition, we have used our previous findings on the nucleon-nucleon interaction with Gaussian radial dependencies, which fits the deuteron characteristics as well as the triton binding energy, root-mean square radius and magnetic dipole moment. The numerical results obtained in this work are in excellent agreement with the corresponding experimental data and the previously published theoretical results in the literature.展开更多
AIM: To investigate the effect and mechanism of stimulation of the hypothalamic paraventricular nucleus with glutamate acid in rats with ulcerative colitis(UC).METHODS: The rats were anesthetized with 10% chloral hydr...AIM: To investigate the effect and mechanism of stimulation of the hypothalamic paraventricular nucleus with glutamate acid in rats with ulcerative colitis(UC).METHODS: The rats were anesthetized with 10% chloral hydrate via abdominal injection and treated with an equal volume of TNBS + 50% ethanol enema, injected into the upper section of the anus with the tail facing up. Colonic damage scores were calculated after injecting a certain dose of glutamic acid into the paraventricular nucleus(p VN), and the effect of the nucleus tractus solitarius(NTS) and vagus nerve in alleviating UC injury through chemical stimulation of the p VN was observed in rats. Expression changes of C-myc, Apaf-1, caspase-3, interleukin(IL)-6, and IL-17 during the protection against UC injury through chemical stimulation of the p VN in rats were detected by Western blot. Malondialdehyde(MDA) content and superoxide dismutase(SOD) activity in colon tissues of rats were measured by colorimetric methods. RESULTS: Chemical stimulation of the PVN significantly reduced UC in rats in a dose-dependent manner. The protective effects of the chemical stimulationof the p VN on rats with UC were eliminated after chemical damage to the p VN. After glutamate receptor antagonist kynurenic acid was injected into the p VN, the protective effects of the chemical stimulation of the p VN were eliminated in rats with UC. After AVpVl receptor antagonist([Deamino-penl, val4, D-Arg8]-vasopressin) was injected into NTS or bilateral chemical damage to NTS, the protective effect of the chemical stimulation of p VN on UC was also eliminated. After chemical stimulation of the p VN, SOD activity increased, MDA content decreased, C-myc protein expression significantly increased, caspase-3 and Apaf-1 protein expression significantly decreased, and IL-6 and IL-17 expression decreased in colon tissues in rats with UC. CONCLUSION: Chemical stimulation of the hypothalamic p VN provides a protective effect against UC injury in rats. Hypothalamic p VN, NTS and vagus nerve play key roles in this process.展开更多
Neurons in the laterodorsal tegmentum (LDTg) and pedunculopontine tegmental nucleus (PPTg) play important roles in central autonomic circuits of the kidney. In this study, we used a combination of retrograde tracers p...Neurons in the laterodorsal tegmentum (LDTg) and pedunculopontine tegmental nucleus (PPTg) play important roles in central autonomic circuits of the kidney. In this study, we used a combination of retrograde tracers pseudorabies virus (PRV)-614 and fluorescence immunohistochemistry to characterize the neuroanatomic substrate of PPTg and LDTg innervating the kidney in the mouse. PRV-614-infected neurons were retrogradely labeled in the rostral and middle parts of LDTg, and the middle and caudal parts of PPTg after tracer injection in the kidney. PRV-614/TPH double-labeled neurons were mainly localized in the rostral of LDTg, whereas PRV-614/TH neurons were scattered within the three parts of LDTg. PRV-614/TPH and PRV-614/TH neurons were located predominantly in the caudal of PPTg (cPPTg). These data provided direct neuroanatomical foundation for the identification of serotonergic and catecholaminergic projections from the mid-brain tegmentum to the kidney.展开更多
The influences of gas nucleus scale on cavitation are analysied in this paper. The results show that there are different inception conditions, growth and collapse processes of bubble for the gas nucleus with different...The influences of gas nucleus scale on cavitation are analysied in this paper. The results show that there are different inception conditions, growth and collapse processes of bubble for the gas nucleus with different scale. The influences shouldbe considered in calculating and simulating cavitation.展开更多
Very little is known about the role of melatonin in the trigeminal system, including the function of melatonin receptor 1. In the present study, adult rats were injected with formaldehyde into the right vibrissae pad ...Very little is known about the role of melatonin in the trigeminal system, including the function of melatonin receptor 1. In the present study, adult rats were injected with formaldehyde into the right vibrissae pad to establish a model of orofacial inflammatory pain. The distribution of melatonin re- ceptor 1 and nicotinamide adenine dinucleotide phosphate diaphorase in the caudal spinal trigeminal nucleus and trigeminal ganglion was determined with immunohistochemistry and histo- chemistry. The results show that there are significant differences in melatonin receptor 1 expression and nicotinamide adenine dinucleotide phosphate diaphorase expression in the trigeminal ganglia and caudal spinal nucleus during the early stage of orofacial inflammatory pain. Our findings sug- gest that when melatonin receptor 1 expression in the caudal spinal nucleus is significantly reduced, melatonin's regulatory effect on pain is attenuated.展开更多
BACKGROUND: Some investigations have demonstrated that exogenous 5-hydroxytryptamine increases the spontaneous firing rate of subthalamic nucleus (STN) neurons in the rat brain. OBJECTIVE: To validate the effect o...BACKGROUND: Some investigations have demonstrated that exogenous 5-hydroxytryptamine increases the spontaneous firing rate of subthalamic nucleus (STN) neurons in the rat brain. OBJECTIVE: To validate the effect of electrical stimulation to the dorsal raphe nucleus (DRN) on the neuronal activities of the STN in rats, as well as analyze the differences in the effects of electrical stimulation at various frequencies. DESIGN, TIME AND SETTING: Experiments were performed from March 2007 to June 2007 in the Electrophysiology Laboratory of Liaoning Medical University with a randomized controlled animal study design. MATERIALS: Twenty-four healthy male Sprague-Dawley (SD) rats, weighing 250-350 g, were selected for this study. An A320R constant electrical stimulator was purchased from World Precision Instruments Company (USA); a Spike 2 biological signal acquisition system was purchased from British CED Company. METHODS: Twenty-four SD rats were randomly assigned into a model group and a normal group, with 12 rats in each group. To mimic Parkinson's disease, rats in the model group were injected with 4μL of 6-hydroxydopamine into the right striatum, then received deep brain stimulation. Rats in the normal group received deep brain stimulation in same brain region without modeling. Electrical stimulation (width, 0.06 ms; intensity, 0.2-0.6 mA; frequency, 20-130 Hz; train duration, 5 seconds) was delivered to the DRN. MAIN OUTCOME MEASURES: The firing rates of STN neurons were observed by extracellular recording using a biological signal acquisition system. RESULTS: DRN-high-frequency stimulation (DRN-HFS) induced excitation in 59% of the STN neurons in the normal group and 50% of the STN neurons in the model group; mean firing rates increased significantly from (7.14±0.75) and (7.94 ± 0.61) Hz to (11.17 ±1.49) and (12.11 ± 1.05) Hz, respectively (P 〈 0.01). Spontaneous firing rate increased significantly in 53% of neurons in normal rats in a frequency-dependent manner when stimulation frequency was in the range 80-130 Hz. CONCLUSION: DRN-HFS induced an excitatory effect on the spontaneous activity of STN neurons in both normal and PD rats. There was a frequency-dependent effect of electrical stimulation of the DRN on spontaneous firing activities in STN neurons.展开更多
文摘In this work, we have applied the translation invariant shell model with number of quanta of excitations N=2,4,6,8and 10 to define the ground-state eigenenergies and their corresponding normalized eigenstates, the root mean-square radius, and the magnetic dipole moment of the nucleus 6Li. We have computed the necessary two-particle orbital fractional parentage coefficients for nuclei with mass number A=6and number of quanta of excitations N=10, which are not available in the literature. In addition, we have used our previous findings on the nucleon-nucleon interaction with Gaussian radial dependencies, which fits the deuteron characteristics as well as the triton binding energy, root-mean square radius and magnetic dipole moment. The numerical results obtained in this work are in excellent agreement with the corresponding experimental data and the previously published theoretical results in the literature.
文摘AIM: To investigate the effect and mechanism of stimulation of the hypothalamic paraventricular nucleus with glutamate acid in rats with ulcerative colitis(UC).METHODS: The rats were anesthetized with 10% chloral hydrate via abdominal injection and treated with an equal volume of TNBS + 50% ethanol enema, injected into the upper section of the anus with the tail facing up. Colonic damage scores were calculated after injecting a certain dose of glutamic acid into the paraventricular nucleus(p VN), and the effect of the nucleus tractus solitarius(NTS) and vagus nerve in alleviating UC injury through chemical stimulation of the p VN was observed in rats. Expression changes of C-myc, Apaf-1, caspase-3, interleukin(IL)-6, and IL-17 during the protection against UC injury through chemical stimulation of the p VN in rats were detected by Western blot. Malondialdehyde(MDA) content and superoxide dismutase(SOD) activity in colon tissues of rats were measured by colorimetric methods. RESULTS: Chemical stimulation of the PVN significantly reduced UC in rats in a dose-dependent manner. The protective effects of the chemical stimulationof the p VN on rats with UC were eliminated after chemical damage to the p VN. After glutamate receptor antagonist kynurenic acid was injected into the p VN, the protective effects of the chemical stimulation of the p VN were eliminated in rats with UC. After AVpVl receptor antagonist([Deamino-penl, val4, D-Arg8]-vasopressin) was injected into NTS or bilateral chemical damage to NTS, the protective effect of the chemical stimulation of p VN on UC was also eliminated. After chemical stimulation of the p VN, SOD activity increased, MDA content decreased, C-myc protein expression significantly increased, caspase-3 and Apaf-1 protein expression significantly decreased, and IL-6 and IL-17 expression decreased in colon tissues in rats with UC. CONCLUSION: Chemical stimulation of the hypothalamic p VN provides a protective effect against UC injury in rats. Hypothalamic p VN, NTS and vagus nerve play key roles in this process.
基金supported by grants from National Natural Science Foundation of China(No.81071307,No.30872440,No.81171259)
文摘Neurons in the laterodorsal tegmentum (LDTg) and pedunculopontine tegmental nucleus (PPTg) play important roles in central autonomic circuits of the kidney. In this study, we used a combination of retrograde tracers pseudorabies virus (PRV)-614 and fluorescence immunohistochemistry to characterize the neuroanatomic substrate of PPTg and LDTg innervating the kidney in the mouse. PRV-614-infected neurons were retrogradely labeled in the rostral and middle parts of LDTg, and the middle and caudal parts of PPTg after tracer injection in the kidney. PRV-614/TPH double-labeled neurons were mainly localized in the rostral of LDTg, whereas PRV-614/TH neurons were scattered within the three parts of LDTg. PRV-614/TPH and PRV-614/TH neurons were located predominantly in the caudal of PPTg (cPPTg). These data provided direct neuroanatomical foundation for the identification of serotonergic and catecholaminergic projections from the mid-brain tegmentum to the kidney.
文摘The influences of gas nucleus scale on cavitation are analysied in this paper. The results show that there are different inception conditions, growth and collapse processes of bubble for the gas nucleus with different scale. The influences shouldbe considered in calculating and simulating cavitation.
基金supported by the National Natural Science Foundation of China,No.81271166,81371107the Natural Science Foundation of Guangdong Province in China,No.10451008901006145
文摘Very little is known about the role of melatonin in the trigeminal system, including the function of melatonin receptor 1. In the present study, adult rats were injected with formaldehyde into the right vibrissae pad to establish a model of orofacial inflammatory pain. The distribution of melatonin re- ceptor 1 and nicotinamide adenine dinucleotide phosphate diaphorase in the caudal spinal trigeminal nucleus and trigeminal ganglion was determined with immunohistochemistry and histo- chemistry. The results show that there are significant differences in melatonin receptor 1 expression and nicotinamide adenine dinucleotide phosphate diaphorase expression in the trigeminal ganglia and caudal spinal nucleus during the early stage of orofacial inflammatory pain. Our findings sug- gest that when melatonin receptor 1 expression in the caudal spinal nucleus is significantly reduced, melatonin's regulatory effect on pain is attenuated.
文摘BACKGROUND: Some investigations have demonstrated that exogenous 5-hydroxytryptamine increases the spontaneous firing rate of subthalamic nucleus (STN) neurons in the rat brain. OBJECTIVE: To validate the effect of electrical stimulation to the dorsal raphe nucleus (DRN) on the neuronal activities of the STN in rats, as well as analyze the differences in the effects of electrical stimulation at various frequencies. DESIGN, TIME AND SETTING: Experiments were performed from March 2007 to June 2007 in the Electrophysiology Laboratory of Liaoning Medical University with a randomized controlled animal study design. MATERIALS: Twenty-four healthy male Sprague-Dawley (SD) rats, weighing 250-350 g, were selected for this study. An A320R constant electrical stimulator was purchased from World Precision Instruments Company (USA); a Spike 2 biological signal acquisition system was purchased from British CED Company. METHODS: Twenty-four SD rats were randomly assigned into a model group and a normal group, with 12 rats in each group. To mimic Parkinson's disease, rats in the model group were injected with 4μL of 6-hydroxydopamine into the right striatum, then received deep brain stimulation. Rats in the normal group received deep brain stimulation in same brain region without modeling. Electrical stimulation (width, 0.06 ms; intensity, 0.2-0.6 mA; frequency, 20-130 Hz; train duration, 5 seconds) was delivered to the DRN. MAIN OUTCOME MEASURES: The firing rates of STN neurons were observed by extracellular recording using a biological signal acquisition system. RESULTS: DRN-high-frequency stimulation (DRN-HFS) induced excitation in 59% of the STN neurons in the normal group and 50% of the STN neurons in the model group; mean firing rates increased significantly from (7.14±0.75) and (7.94 ± 0.61) Hz to (11.17 ±1.49) and (12.11 ± 1.05) Hz, respectively (P 〈 0.01). Spontaneous firing rate increased significantly in 53% of neurons in normal rats in a frequency-dependent manner when stimulation frequency was in the range 80-130 Hz. CONCLUSION: DRN-HFS induced an excitatory effect on the spontaneous activity of STN neurons in both normal and PD rats. There was a frequency-dependent effect of electrical stimulation of the DRN on spontaneous firing activities in STN neurons.