期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于零空间核判别分析的人脸识别 被引量:4
1
作者 陈达遥 陈秀宏 董昌剑 《计算机研究与发展》 EI CSCD 北大核心 2013年第9期1924-1932,共9页
提取有效特征对高维数据的模式分类起着关键作用.零空间线性判别分析(null-space linear discriminant analysis,NLDA)在数据降维和特征提取上表现出较好的性能,但是该方法本质上仍是一种线性方法.为有效提取数据的非线性特征,提出了零... 提取有效特征对高维数据的模式分类起着关键作用.零空间线性判别分析(null-space linear discriminant analysis,NLDA)在数据降维和特征提取上表现出较好的性能,但是该方法本质上仍是一种线性方法.为有效提取数据的非线性特征,提出了零空间核判别分析算法(null-space kernel discriminant analysis,NKDA)并将其应用于人脸识别.利用核函数将原始样本隐式地映射到高维特征空间后,采用一次瘦QR分解求核类内散布矩阵的零空间鉴别矢量集,最后再进行一次Cholesky分解求得具正交性的核空间鉴别矢量集.与NLDA相比,NKDA具有更好的识别性能且在大样本情况下也能应用.另外,基于NKDA,提出了增量NKDA算法,当增加新的训练样本时能正确地更新NKDA鉴别矢量集.在ORL库、Yale库和PIE子库上的实验结果表明了算法的有效性和效率,在有效降维的同时能进一步提高鉴别能力. 展开更多
关键词 人脸识别 特征提取 零空间核判别分析 零空间线性判别分析 增量学习 瘦QR分解
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部