Graphene, a well-known two-dimensional(2 D) material, has sparked broad enthusiasm in both scientific and industrial communities in these years, due to its exceptional electrical, thermal, mechanical, and versatile pr...Graphene, a well-known two-dimensional(2 D) material, has sparked broad enthusiasm in both scientific and industrial communities in these years, due to its exceptional electrical, thermal, mechanical, and versatile properties. However, many properties and applications of graphene are layer-number dependent. The preparation of high-quality graphene with controlled layer numbers is full of challenge, since the layer number varies much with the synthesis routes and relevant experimental conditions. Hence, there is an urgent need to improve the layer-number controllability of graphene preparation. Generally, graphene can be prepared by two complementary approaches: "top-down" and "bottom-up". Since they have their own advantages, the recent advances in the layer-number tunable preparation of high-quality graphene are separately studied from the two aspects in this review, especially those dedicated to single parameter. Some effective strategies are discussed in detail, mainly including 1) supercritical-CO2 assisted sonication, electrochemical exfoliation of graphite intercalation compounds, and layer-by-layer thinning with plasma or laser, for "top-down" graphene;2) chemical vapor deposition(CVD) on dual-metal substrate, ion-implantation CVD, layer-by-layer CVD, plasma-enhanced CVD, layered-double-hydroxides template-assisted CVD;and 3) graphite-enclosure assisted epitaxial growth and pulsed-magnetron-sputtering assisted physical vapor deposition for "bottom-up" graphene on various substrates. In addition, the respective advantages of graphene with different layer numbers in properties and applications are also presented. Finally, the contribution concludes with some important perspectives on the remained challenges and future perspectives.展开更多
To improve flood control efficiency and increase urban resilience to flooding,the impacts of forest type change on flood control in the upper reach of the Tingjiang River(URTR) were evaluated by a modified model based...To improve flood control efficiency and increase urban resilience to flooding,the impacts of forest type change on flood control in the upper reach of the Tingjiang River(URTR) were evaluated by a modified model based on the Soil Conservation Service curve number(SCS-CN) method. Parameters of the model were selected and determined according to the comprehensive analysis of model evaluation indexes. The first simulation of forest reconstruction scenario,namely a coniferous forest covering 59.35km^2 is replaced by a broad-leaved forest showed no significant impact on the flood reduction in the URTR. The second simulation was added with 61.75km^2 bamboo forest replaced by broad-leaved forest,the reduction of flood peak discharge and flood volume could be improved significantly. Specifically,flood peak discharge of 10-year return period event was reduced to 7-year event,and the reduction rate of small flood was 21%-28%. Moreover,the flood volume was reduced by 9%-14% and 18%-35% for moderate floods and small floods,respectively. The resultssuggest that the bamboo forest reconstruction is an effective control solution for small to moderate flood in the URTR,the effect of forest conversion on flood volume is increasingly reduced as the rainfall amount increases to more extreme magnitude. Using a hydrological model with scenarios analysis is an effective simulation approach in investigating the relationship between forest type change and flood control. This method would provide reliable support for flood control and disaster mitigation in mountainous cities.展开更多
Objectives Firstly,according to the characteristics of COVID-19 epidemic and the control measures of the government of Shaanxi Province,a general population epidemic model is es-tablished.Then,the control reproduction...Objectives Firstly,according to the characteristics of COVID-19 epidemic and the control measures of the government of Shaanxi Province,a general population epidemic model is es-tablished.Then,the control reproduction number of general population epidemic model is obtained.Based on the epidemic model of general population,the epidemic model of general population and college population is further established,and the control reproduction number is also obtained.Methods For the established epidemic model,firstly,the expression of the control reproduc-tion number is obtained by using the next generation matrix.Secondly,the real-time reported data of COVID-19 in Shaanxi Province is used to fit the epidemic model,and the parameters in the model are estimated by least square method and MCMC.Thirdly,the Latin hypercube sampling method and partial rank correlation coefficient(PRCC)are adopted to analyze the sensitivity of the model.Conclusions The control reproduction number remained at 3 from January 23 to January 31,then gradually decreased from 3 to slightly greater than 0.2 by using the real-time reports on the number of COVID-19 infected cases from Health Committee of Shaanxi Province in China.In order to further control the spread of the epidemic,the following measures can be taken:(i)reducing infection by wearing masks,paying attention to personal hygiene and limiting travel;(i)improving isolation of suspected patients and treatment of symptomatic individuals.In particular,the epidemic model of the collge population and the general population is estab-lished,and the control reproduction number is given,which will provide theoretical basis for the prevention and control of the epidemic in the colleges.展开更多
To improve the performance of an active mass damper control system,the controller should be designed based on a reduced-order model. An improved method based on balanced truncation method was proposed to reduce the di...To improve the performance of an active mass damper control system,the controller should be designed based on a reduced-order model. An improved method based on balanced truncation method was proposed to reduce the dimension of high-rise buildings,and was compared with other widely used reduction methods by using a framework with ten floors. This optimized method has improvement of reduction process and choice of the order. Based on the reduced-order model obtained by the improved method and pole-assignment algorithm,a controller was designed. Finally,a comparative analysis of structural responses,transfer functions,and poles was conducted on an actual high-rise building. The results show the effectiveness of the improved method.展开更多
In this paper, the global controllability for a class of high dimensional polynomial systems has been investigated and a constructive algebraic criterion algorithm for their global controllability has been obtained. B...In this paper, the global controllability for a class of high dimensional polynomial systems has been investigated and a constructive algebraic criterion algorithm for their global controllability has been obtained. By the criterion algorithm, the global controllability can be determined in finite steps of arithmetic operations. The algorithm is imposed on the coefficients of the polynomials only and the analysis technique is based on Sturm Theorem in real algebraic geometry and its modern progress. Finally, the authors will give some examples to show the application of our results.展开更多
A self-tuning reaching law based sliding mode control(SMC)theory is proposed to stabilize the nonlinear continuous stirred tank reactor(CSTR).T-S fuzzy logic is used to build a global fuzzy state-space linear model.Co...A self-tuning reaching law based sliding mode control(SMC)theory is proposed to stabilize the nonlinear continuous stirred tank reactor(CSTR).T-S fuzzy logic is used to build a global fuzzy state-space linear model.Combing the traits of SMC and CSTR,three fuzzy rules can meet the requirements of controlled system.The self-tuning switch control law which can drive the state variables to the sliding surface as soon as possible is designed to ensure the robustness of uncertain fuzzy system.Lyapunov equation is applied to proving the stability of the sliding surface.The simulations show that the proposed approach can achieve desired performance with less chattering problem.展开更多
In this paper, two methods of generating minimally persistent circle formation are presented. The proposed methods adopt a leader-follower strategy and all followers are firstly motivated to move into the leader's in...In this paper, two methods of generating minimally persistent circle formation are presented. The proposed methods adopt a leader-follower strategy and all followers are firstly motivated to move into the leader's interaction range. Based on the information about relative angle and relative distance, two numbering schemes are proposed to generate minimally persistent circle formation. Distributed control laws are also designed to maintain the desired relative distance between agents. The distinctive features of the proposed methods are as follows. First, only 2n - 3 unilateral communication links for n agents are needed during the circle formation process and thus the communication complexity can be reduced. In addition, the formation topology is kept fixed for the whole motion and achieves a self-stability property. Finally, each follower keeps a regualr interval with its neighbors and the formation converges to a uniform circle formation. Simulation results are also provided to demonstrate the effectiveness of the proposed methods.展开更多
Drug treatment, snail control, cercariae control, improved sanitation and health education are the effective strategies which are used to control the schistosomiasis. In this paper, we consider a deterministic model f...Drug treatment, snail control, cercariae control, improved sanitation and health education are the effective strategies which are used to control the schistosomiasis. In this paper, we consider a deterministic model for schistosomiasis transmission dynamics in order to explore the role of the several control strategies. The global stability of a schistosomiasis infection model that involves mating structure including male schistosomes, female schistosomes, paired schistosomes and snails is studied by constructing appropriate Lyapunov functions. We derive the basic reproduction number R0 for the deterministic model, and establish that the global dynamics are completely determined by the values of R0. We show that the disease can be eradicated when R0?≤1;otherwise, the system is persistent. In the case where ?R0?>1, we prove the existence, uniqueness and global asymptotic stability of an endemic steady state. Sensitivity analysis and simulations are carried out in order to determine the relative importance of different control strategies for disease transmission and prevalence. Next, optimal control theory is applied to investigate the control strategies for eliminating schistosomiasis using time dependent controls. The characterization of the optimal control is carried out via the Pontryagins Maximum Principle. The simulation results demonstrate that the insecticide is important in the control of schistosomiasis.展开更多
Although much progress has been made in reducing the public health burden of the human immunodeficiency virus(HIV),which causes acquired immunodeficiency syndrome(AIDS),since its emergence in the 1980s(largely due to ...Although much progress has been made in reducing the public health burden of the human immunodeficiency virus(HIV),which causes acquired immunodeficiency syndrome(AIDS),since its emergence in the 1980s(largely due to the large-scale use and availability of potent antiviral therapy,improved diagnostic and intervention and mitigation measures),HIV remains an important public health challenge globally,including in the United States.This study is based on the use of mathematical modeling approaches to assess the population-level impact of pre-exposure prophylaxis(PrEP),voluntary testing(to detect undetected HIV-infected individuals),and changes in human behavior(with respect to risk structure),on the spread and control of HIV/AIDS in an MSM(men-who-have sex-with-men)population.Specifically,a novel two-group mathematical model,which stratifies the total MSM population based on risk(low or high)of acquisition of HIV infection,is formulated.The model undergoes a PrEP-induced backward bifurcation when the control reproduction number of the model is less than one if the efficacy of PrEP to prevent a high-risk susceptible MSM individual from acquiring HIV infection is not perfect(the consequence of which is that,while necessary,having the reproduction number of the model less than one is no longer sufficient for the elimination of the disease in the MSM population).For the case where the efficacy of PrEP is perfect,this study shows that the disease-free equilibrium of the two-group model is globally-asymptotically stable when the associated control reproduction number of the model is less than one.Global sensitivity analysis was carried out to identify the main parameters of the model that have the highest influence on the value of the control reproduction number of the model(thereby,having the highest influence on the disease burden in the MSM population).Numerical simulations of the model,using a plausible range of parameter values,show that if half of the MSM population considered adhere strictly to the specified PrEP regimen(while other interventions are maintained at their baseline values),a reduction of about 22%of the new yearly HIV cases recorded at the peak of the disease could be averted(compared to the worst-case scenario where PrEP-based intervention is not implemented in the MSM population).The yearly reduction at the peak increases to about 50%if the PrEP coverage in the MSM population increases to 80%.This study showed,based on the parameter values used in the simulations,that the prospects of elimination of HIV/AIDS in the MSM community are promising if high-risk susceptible individuals are no more than 15%more likely to acquire HIV infection,in comparison to their low-risk counterparts.Furthermore,these prospects are significantly improved if undetected HIV-infected individuals are detected within an optimal period of time.展开更多
基金Sponsored by the JSPS Invitational Fellow ship for Research in Japan (Grant No. L18516)the National Natural Science Foundation of China(Grant No. 51273148)
文摘Graphene, a well-known two-dimensional(2 D) material, has sparked broad enthusiasm in both scientific and industrial communities in these years, due to its exceptional electrical, thermal, mechanical, and versatile properties. However, many properties and applications of graphene are layer-number dependent. The preparation of high-quality graphene with controlled layer numbers is full of challenge, since the layer number varies much with the synthesis routes and relevant experimental conditions. Hence, there is an urgent need to improve the layer-number controllability of graphene preparation. Generally, graphene can be prepared by two complementary approaches: "top-down" and "bottom-up". Since they have their own advantages, the recent advances in the layer-number tunable preparation of high-quality graphene are separately studied from the two aspects in this review, especially those dedicated to single parameter. Some effective strategies are discussed in detail, mainly including 1) supercritical-CO2 assisted sonication, electrochemical exfoliation of graphite intercalation compounds, and layer-by-layer thinning with plasma or laser, for "top-down" graphene;2) chemical vapor deposition(CVD) on dual-metal substrate, ion-implantation CVD, layer-by-layer CVD, plasma-enhanced CVD, layered-double-hydroxides template-assisted CVD;and 3) graphite-enclosure assisted epitaxial growth and pulsed-magnetron-sputtering assisted physical vapor deposition for "bottom-up" graphene on various substrates. In addition, the respective advantages of graphene with different layer numbers in properties and applications are also presented. Finally, the contribution concludes with some important perspectives on the remained challenges and future perspectives.
基金funded by the National Natural Science Foundation of China (Grants No.51278239)
文摘To improve flood control efficiency and increase urban resilience to flooding,the impacts of forest type change on flood control in the upper reach of the Tingjiang River(URTR) were evaluated by a modified model based on the Soil Conservation Service curve number(SCS-CN) method. Parameters of the model were selected and determined according to the comprehensive analysis of model evaluation indexes. The first simulation of forest reconstruction scenario,namely a coniferous forest covering 59.35km^2 is replaced by a broad-leaved forest showed no significant impact on the flood reduction in the URTR. The second simulation was added with 61.75km^2 bamboo forest replaced by broad-leaved forest,the reduction of flood peak discharge and flood volume could be improved significantly. Specifically,flood peak discharge of 10-year return period event was reduced to 7-year event,and the reduction rate of small flood was 21%-28%. Moreover,the flood volume was reduced by 9%-14% and 18%-35% for moderate floods and small floods,respectively. The resultssuggest that the bamboo forest reconstruction is an effective control solution for small to moderate flood in the URTR,the effect of forest conversion on flood volume is increasingly reduced as the rainfall amount increases to more extreme magnitude. Using a hydrological model with scenarios analysis is an effective simulation approach in investigating the relationship between forest type change and flood control. This method would provide reliable support for flood control and disaster mitigation in mountainous cities.
基金Supported by the Fundamental Research Funds for the Central Universities,CHD(300102129201)the Nat ural Science Basic Research Plan in Shaanxi Province of China(2018JM1011)the National Natural Science Foundation of China(11701041)。
文摘Objectives Firstly,according to the characteristics of COVID-19 epidemic and the control measures of the government of Shaanxi Province,a general population epidemic model is es-tablished.Then,the control reproduction number of general population epidemic model is obtained.Based on the epidemic model of general population,the epidemic model of general population and college population is further established,and the control reproduction number is also obtained.Methods For the established epidemic model,firstly,the expression of the control reproduc-tion number is obtained by using the next generation matrix.Secondly,the real-time reported data of COVID-19 in Shaanxi Province is used to fit the epidemic model,and the parameters in the model are estimated by least square method and MCMC.Thirdly,the Latin hypercube sampling method and partial rank correlation coefficient(PRCC)are adopted to analyze the sensitivity of the model.Conclusions The control reproduction number remained at 3 from January 23 to January 31,then gradually decreased from 3 to slightly greater than 0.2 by using the real-time reports on the number of COVID-19 infected cases from Health Committee of Shaanxi Province in China.In order to further control the spread of the epidemic,the following measures can be taken:(i)reducing infection by wearing masks,paying attention to personal hygiene and limiting travel;(i)improving isolation of suspected patients and treatment of symptomatic individuals.In particular,the epidemic model of the collge population and the general population is estab-lished,and the control reproduction number is given,which will provide theoretical basis for the prevention and control of the epidemic in the colleges.
文摘To improve the performance of an active mass damper control system,the controller should be designed based on a reduced-order model. An improved method based on balanced truncation method was proposed to reduce the dimension of high-rise buildings,and was compared with other widely used reduction methods by using a framework with ten floors. This optimized method has improvement of reduction process and choice of the order. Based on the reduced-order model obtained by the improved method and pole-assignment algorithm,a controller was designed. Finally,a comparative analysis of structural responses,transfer functions,and poles was conducted on an actual high-rise building. The results show the effectiveness of the improved method.
基金supported by the Natural Science Foundation of China under Grant Nos.60804008,61174048and 11071263the Fundamental Research Funds for the Central Universities and Guangdong Province Key Laboratory of Computational Science at Sun Yat-Sen University
文摘In this paper, the global controllability for a class of high dimensional polynomial systems has been investigated and a constructive algebraic criterion algorithm for their global controllability has been obtained. By the criterion algorithm, the global controllability can be determined in finite steps of arithmetic operations. The algorithm is imposed on the coefficients of the polynomials only and the analysis technique is based on Sturm Theorem in real algebraic geometry and its modern progress. Finally, the authors will give some examples to show the application of our results.
文摘A self-tuning reaching law based sliding mode control(SMC)theory is proposed to stabilize the nonlinear continuous stirred tank reactor(CSTR).T-S fuzzy logic is used to build a global fuzzy state-space linear model.Combing the traits of SMC and CSTR,three fuzzy rules can meet the requirements of controlled system.The self-tuning switch control law which can drive the state variables to the sliding surface as soon as possible is designed to ensure the robustness of uncertain fuzzy system.Lyapunov equation is applied to proving the stability of the sliding surface.The simulations show that the proposed approach can achieve desired performance with less chattering problem.
基金Project supported by the National Basic Research Program of China (Grant No.2010CB731800)the National Natural Science Foundation of China (Grant Nos.60934003,61074065,and 61375105)the Natural Science Foundation of Hebei Province,China (Grant No.F2012203119)
文摘In this paper, two methods of generating minimally persistent circle formation are presented. The proposed methods adopt a leader-follower strategy and all followers are firstly motivated to move into the leader's interaction range. Based on the information about relative angle and relative distance, two numbering schemes are proposed to generate minimally persistent circle formation. Distributed control laws are also designed to maintain the desired relative distance between agents. The distinctive features of the proposed methods are as follows. First, only 2n - 3 unilateral communication links for n agents are needed during the circle formation process and thus the communication complexity can be reduced. In addition, the formation topology is kept fixed for the whole motion and achieves a self-stability property. Finally, each follower keeps a regualr interval with its neighbors and the formation converges to a uniform circle formation. Simulation results are also provided to demonstrate the effectiveness of the proposed methods.
文摘Drug treatment, snail control, cercariae control, improved sanitation and health education are the effective strategies which are used to control the schistosomiasis. In this paper, we consider a deterministic model for schistosomiasis transmission dynamics in order to explore the role of the several control strategies. The global stability of a schistosomiasis infection model that involves mating structure including male schistosomes, female schistosomes, paired schistosomes and snails is studied by constructing appropriate Lyapunov functions. We derive the basic reproduction number R0 for the deterministic model, and establish that the global dynamics are completely determined by the values of R0. We show that the disease can be eradicated when R0?≤1;otherwise, the system is persistent. In the case where ?R0?>1, we prove the existence, uniqueness and global asymptotic stability of an endemic steady state. Sensitivity analysis and simulations are carried out in order to determine the relative importance of different control strategies for disease transmission and prevalence. Next, optimal control theory is applied to investigate the control strategies for eliminating schistosomiasis using time dependent controls. The characterization of the optimal control is carried out via the Pontryagins Maximum Principle. The simulation results demonstrate that the insecticide is important in the control of schistosomiasis.
文摘Although much progress has been made in reducing the public health burden of the human immunodeficiency virus(HIV),which causes acquired immunodeficiency syndrome(AIDS),since its emergence in the 1980s(largely due to the large-scale use and availability of potent antiviral therapy,improved diagnostic and intervention and mitigation measures),HIV remains an important public health challenge globally,including in the United States.This study is based on the use of mathematical modeling approaches to assess the population-level impact of pre-exposure prophylaxis(PrEP),voluntary testing(to detect undetected HIV-infected individuals),and changes in human behavior(with respect to risk structure),on the spread and control of HIV/AIDS in an MSM(men-who-have sex-with-men)population.Specifically,a novel two-group mathematical model,which stratifies the total MSM population based on risk(low or high)of acquisition of HIV infection,is formulated.The model undergoes a PrEP-induced backward bifurcation when the control reproduction number of the model is less than one if the efficacy of PrEP to prevent a high-risk susceptible MSM individual from acquiring HIV infection is not perfect(the consequence of which is that,while necessary,having the reproduction number of the model less than one is no longer sufficient for the elimination of the disease in the MSM population).For the case where the efficacy of PrEP is perfect,this study shows that the disease-free equilibrium of the two-group model is globally-asymptotically stable when the associated control reproduction number of the model is less than one.Global sensitivity analysis was carried out to identify the main parameters of the model that have the highest influence on the value of the control reproduction number of the model(thereby,having the highest influence on the disease burden in the MSM population).Numerical simulations of the model,using a plausible range of parameter values,show that if half of the MSM population considered adhere strictly to the specified PrEP regimen(while other interventions are maintained at their baseline values),a reduction of about 22%of the new yearly HIV cases recorded at the peak of the disease could be averted(compared to the worst-case scenario where PrEP-based intervention is not implemented in the MSM population).The yearly reduction at the peak increases to about 50%if the PrEP coverage in the MSM population increases to 80%.This study showed,based on the parameter values used in the simulations,that the prospects of elimination of HIV/AIDS in the MSM community are promising if high-risk susceptible individuals are no more than 15%more likely to acquire HIV infection,in comparison to their low-risk counterparts.Furthermore,these prospects are significantly improved if undetected HIV-infected individuals are detected within an optimal period of time.