隐层节点数是确定人工神经网络模型结构的重要参数,但目前尚无通用的确定方法。以水库中长期优化调度规则提取为例,选择了四种典型的隐层节点数经验确定公式,将合格率、确定性系数、平均绝对误差、指标综合占优数等作为评价指标,以全年...隐层节点数是确定人工神经网络模型结构的重要参数,但目前尚无通用的确定方法。以水库中长期优化调度规则提取为例,选择了四种典型的隐层节点数经验确定公式,将合格率、确定性系数、平均绝对误差、指标综合占优数等作为评价指标,以全年、汛期、非汛期为统计时段,评价了各经验公式对四项评价指标的拟合和检验效果,并进行了摄动分析。结果表明,Lippmann R P公式应用效果、适应性及稳定性均较好,更适合建立水库优化调度规则提取模型。展开更多
文摘隐层节点数是确定人工神经网络模型结构的重要参数,但目前尚无通用的确定方法。以水库中长期优化调度规则提取为例,选择了四种典型的隐层节点数经验确定公式,将合格率、确定性系数、平均绝对误差、指标综合占优数等作为评价指标,以全年、汛期、非汛期为统计时段,评价了各经验公式对四项评价指标的拟合和检验效果,并进行了摄动分析。结果表明,Lippmann R P公式应用效果、适应性及稳定性均较好,更适合建立水库优化调度规则提取模型。