This paper is a review, a thesis, of some interesting results that have been obtained in various research concerning the “brane collisions in string and M-theory” (Cyclic Universe), p-adic inflation and p-adic cosmo...This paper is a review, a thesis, of some interesting results that have been obtained in various research concerning the “brane collisions in string and M-theory” (Cyclic Universe), p-adic inflation and p-adic cosmology. In Section 2, we have described some equations concerning cosmic evolution in a Cyclic Universe. In Section 3, we have described some equations concerning the cosmological perturbations in a Big Crunch/Big Bang space-time, the M-theory model of a Big Crunch/Big Bang transition and some equations concerning the solution of a braneworld Big Crunch/Big Bang Cosmology. In Section 4, we have described some equations concerning the generating ekpyrotic curvature perturbations before the Big Bang, some equations concerning the effective five-dimensional theory of the strongly coupled heterotic string as a gauged version of N=1five-dimensional supergravity with four-dimensional boundaries, and some equations concerning the colliding branes and the origin of the Hot Big Bang. In Section 5, we have described some equations regarding the “null energy condition” violation concerning the inflationary models and some equations concerning the evolution to a smooth universe in an ekpyrotic contracting phase with w>1. In Section 6, we have described some equations concerning the approximate inflationary solutions rolling away from the unstable maximum of p-adic string theory. In Section 7, we have described various equations concerning the p-adic minisuperspace model, zeta strings, zeta nonlocal scalar fields and p-adic and adelic quantum cosmology. In Section 8, we have shown various and interesting mathematical connections between some equations concerning the p-adic inflation, the p-adic quantum cosmology, the zeta strings and the brane collisions in string and M-theory. Furthermore, in each section, we have shown the mathematical connections with various sectors of Number Theory, principally the Ramanujan’s modular equations, the Aurea Ratio and the Fibonacci’s numbers.展开更多
In the paper some new upper bounds with parameters were obtained for the classical Ramsey numbers R(m,n,l) and R(m,n,l,s) . By using the upper bounds, it was proved that R (4,4,4)≤236.
In this paper, we define the generalized r-Whitney numbers of the first and second kind. Moreover, we drive the generalized Whitney numbers of the first and second kind. The recurrence relations and the generating fun...In this paper, we define the generalized r-Whitney numbers of the first and second kind. Moreover, we drive the generalized Whitney numbers of the first and second kind. The recurrence relations and the generating functions of these numbers are derived. The relations between these numbers and generalized Stirling numbers of the first and second kind are deduced. Furthermore, some special cases are given. Finally, matrix representation of the relations between Whitney and Stirling numbers is given.展开更多
Let p be a prime number and f_2(G) be the number of factorizations G = AB of the group G, where A, B are subgroups of G. Let G be a class of finite p-groups as follows,G = a, b | a^(p^n)= b^(p^m)= 1, a^b= a^(p^(n-1)+1...Let p be a prime number and f_2(G) be the number of factorizations G = AB of the group G, where A, B are subgroups of G. Let G be a class of finite p-groups as follows,G = a, b | a^(p^n)= b^(p^m)= 1, a^b= a^(p^(n-1)+1), where n > m ≥ 1. In this article, the factorization number f_2(G) of G is computed, improving the results of Saeedi and Farrokhi in [5].展开更多
This paper introduces the concept of BC sequences and investigates some conditions which imply the strong law of large numbers for these sequences. The authors also study the strong law of large numbers for general ra...This paper introduces the concept of BC sequences and investigates some conditions which imply the strong law of large numbers for these sequences. The authors also study the strong law of large numbers for general random variable sequences. As applications of the result the authors characterize p-smoothableness of Banach space. Some generalizations of Petrov theorem, the Marcinkiewicz-Zygmund theorem and Hoffmann-J(?)rgensen and Pisier theorem are obtained.展开更多
This paper investigates some conditions which imply the strong laws of large numbers for Banach space valued random variable sequences. Some generalizations of the Marcinkiewicz-Zygmund theorem and the Hoffmann-J?rgen...This paper investigates some conditions which imply the strong laws of large numbers for Banach space valued random variable sequences. Some generalizations of the Marcinkiewicz-Zygmund theorem and the Hoffmann-J?rgensen and Pisier theorem are obtained. Key words strong law of large numbers - Banach space valued random variable sequence - p-smoothable Banach space CLC number O 211.4 - O 211.6 Foundation item: Supported by the National Natural Science Foundation of China (10071058)Biography: Gan Shi-xin (1939-), male, Professor, research direction: martingale theory, probability limiting theory and Banach space geometry theory.展开更多
For a graph G, let be the chromatic number of G. It is well-known that holds for any graph G with clique number . For a hereditary graph class , whether there exists a function f such that holds for every has been wid...For a graph G, let be the chromatic number of G. It is well-known that holds for any graph G with clique number . For a hereditary graph class , whether there exists a function f such that holds for every has been widely studied. Moreover, the form of minimum such an f is also concerned. A result of Schiermeyer shows that every -free graph G with clique number has . Chudnovsky and Sivaraman proved that every -free with clique number graph is -colorable. In this paper, for any -free graph G with clique number , we prove that . The main methods in the proof are set partition and induction.展开更多
Let <img src="Edit_092a0db1-eefa-4bff-81a0-751d038158ad.png" width="58" height="20" alt="" /> be a graph. A function <img src="Edit_b7158ed5-6825-41cd-b7f0-5ab5e16...Let <img src="Edit_092a0db1-eefa-4bff-81a0-751d038158ad.png" width="58" height="20" alt="" /> be a graph. A function <img src="Edit_b7158ed5-6825-41cd-b7f0-5ab5e16fc53d.png" width="79" height="20" alt="" /> is said to be a Signed Dominating Function (SDF) if <img src="Edit_c6e63805-bcaa-46a9-bc77-42750af8efd4.png" width="135" height="25" alt="" /> holds for all <img src="Edit_bba1b366-af70-46cd-aefe-fc68869da670.png" width="42" height="20" alt="" />. The signed domination number <img src="Edit_22e6d87a-e3be-4037-b4b6-c1de6a40abb0.png" width="284" height="25" alt="" />. In this paper, we determine the exact value of the Signed Domination Number of graphs <img src="Edit_36ef2747-da44-4f9b-a10a-340c61a3f28c.png" width="19" height="20" alt="" /> and <img src="Edit_26eb0f74-fcc2-49ad-8567-492cf3115b73.png" width="19" height="20" alt="" /> for <img src="Edit_856dbcc1-d215-4144-b50c-ac8a225d664f.png" width="32" height="20" alt="" />, which is generalized the known results, respectively, where <img src="Edit_4b7e4f8f-5d38-4fd0-ac4e-dd8ef243029f.png" width="19" height="20" alt="" /> and <img src="Edit_6557afba-e697-4397-994e-a9bda83e3219.png" width="19" height="20" alt="" /> are denotes the <em>k</em>-th power graphs of cycle <img src="Edit_27e6e80f-85d5-4208-b367-a757a0e55d0b.png" width="21" height="20" alt="" /> and path <img src="Edit_70ac5266-950b-4bfd-8d04-21711d3ffc33.png" width="18" height="20" alt="" />.展开更多
Polysurfacic tori or kideas are three-dimensional objects formed by rotating a regular polygon around a central axis. These toric shapes are referred to as “polysurfacic” because their characteristics, such as the n...Polysurfacic tori or kideas are three-dimensional objects formed by rotating a regular polygon around a central axis. These toric shapes are referred to as “polysurfacic” because their characteristics, such as the number of sides or surfaces separated by edges, can vary in a non-trivial manner depending on the degree of twisting during the revolution. We use the term “Kideas” to specifically denote these polysurfacic tori, and we represent the number of sides (referred to as “facets”) of the original polygon followed by a point, while the number of facets from which the torus is twisted during its revolution is indicated. We then explore the use of concave regular polygons to generate Kideas. We finally give acceleration for the algorithm for calculating the set of prime numbers.展开更多
We generalize the congruences of Friedmann-Tamarkine (1909), Lehmer (1938), and Ernvall-Metsänkyla (1991) on the sums of powers of integers weighted by powers of the Fermat quotients to the next Fermat quotient p...We generalize the congruences of Friedmann-Tamarkine (1909), Lehmer (1938), and Ernvall-Metsänkyla (1991) on the sums of powers of integers weighted by powers of the Fermat quotients to the next Fermat quotient power, namely to the third power of the Fermat quotient. Using this result and the Gessel identity (2005) combined with our past work (2021), we are able to relate residues of some truncated convolutions of Bernoulli numbers with some Ernvall-Metsänkyla residues to residues of some full convolutions of the same kind. We also establish some congruences concerning other related weighted sums of powers of integers when these sums are weighted by some analogs of the Teichmüller characters.展开更多
文摘This paper is a review, a thesis, of some interesting results that have been obtained in various research concerning the “brane collisions in string and M-theory” (Cyclic Universe), p-adic inflation and p-adic cosmology. In Section 2, we have described some equations concerning cosmic evolution in a Cyclic Universe. In Section 3, we have described some equations concerning the cosmological perturbations in a Big Crunch/Big Bang space-time, the M-theory model of a Big Crunch/Big Bang transition and some equations concerning the solution of a braneworld Big Crunch/Big Bang Cosmology. In Section 4, we have described some equations concerning the generating ekpyrotic curvature perturbations before the Big Bang, some equations concerning the effective five-dimensional theory of the strongly coupled heterotic string as a gauged version of N=1five-dimensional supergravity with four-dimensional boundaries, and some equations concerning the colliding branes and the origin of the Hot Big Bang. In Section 5, we have described some equations regarding the “null energy condition” violation concerning the inflationary models and some equations concerning the evolution to a smooth universe in an ekpyrotic contracting phase with w>1. In Section 6, we have described some equations concerning the approximate inflationary solutions rolling away from the unstable maximum of p-adic string theory. In Section 7, we have described various equations concerning the p-adic minisuperspace model, zeta strings, zeta nonlocal scalar fields and p-adic and adelic quantum cosmology. In Section 8, we have shown various and interesting mathematical connections between some equations concerning the p-adic inflation, the p-adic quantum cosmology, the zeta strings and the brane collisions in string and M-theory. Furthermore, in each section, we have shown the mathematical connections with various sectors of Number Theory, principally the Ramanujan’s modular equations, the Aurea Ratio and the Fibonacci’s numbers.
文摘In the paper some new upper bounds with parameters were obtained for the classical Ramsey numbers R(m,n,l) and R(m,n,l,s) . By using the upper bounds, it was proved that R (4,4,4)≤236.
文摘In this paper, we define the generalized r-Whitney numbers of the first and second kind. Moreover, we drive the generalized Whitney numbers of the first and second kind. The recurrence relations and the generating functions of these numbers are derived. The relations between these numbers and generalized Stirling numbers of the first and second kind are deduced. Furthermore, some special cases are given. Finally, matrix representation of the relations between Whitney and Stirling numbers is given.
基金Supported by National Natural Science Foundation of China(11601121)Henan Provincial Natural Science Foundation of China(162300410066)
文摘Let p be a prime number and f_2(G) be the number of factorizations G = AB of the group G, where A, B are subgroups of G. Let G be a class of finite p-groups as follows,G = a, b | a^(p^n)= b^(p^m)= 1, a^b= a^(p^(n-1)+1), where n > m ≥ 1. In this article, the factorization number f_2(G) of G is computed, improving the results of Saeedi and Farrokhi in [5].
基金Supported by the National Natural Science Foundation of China(10071058)
文摘This paper introduces the concept of BC sequences and investigates some conditions which imply the strong law of large numbers for these sequences. The authors also study the strong law of large numbers for general random variable sequences. As applications of the result the authors characterize p-smoothableness of Banach space. Some generalizations of Petrov theorem, the Marcinkiewicz-Zygmund theorem and Hoffmann-J(?)rgensen and Pisier theorem are obtained.
文摘This paper investigates some conditions which imply the strong laws of large numbers for Banach space valued random variable sequences. Some generalizations of the Marcinkiewicz-Zygmund theorem and the Hoffmann-J?rgensen and Pisier theorem are obtained. Key words strong law of large numbers - Banach space valued random variable sequence - p-smoothable Banach space CLC number O 211.4 - O 211.6 Foundation item: Supported by the National Natural Science Foundation of China (10071058)Biography: Gan Shi-xin (1939-), male, Professor, research direction: martingale theory, probability limiting theory and Banach space geometry theory.
文摘For a graph G, let be the chromatic number of G. It is well-known that holds for any graph G with clique number . For a hereditary graph class , whether there exists a function f such that holds for every has been widely studied. Moreover, the form of minimum such an f is also concerned. A result of Schiermeyer shows that every -free graph G with clique number has . Chudnovsky and Sivaraman proved that every -free with clique number graph is -colorable. In this paper, for any -free graph G with clique number , we prove that . The main methods in the proof are set partition and induction.
文摘Let <img src="Edit_092a0db1-eefa-4bff-81a0-751d038158ad.png" width="58" height="20" alt="" /> be a graph. A function <img src="Edit_b7158ed5-6825-41cd-b7f0-5ab5e16fc53d.png" width="79" height="20" alt="" /> is said to be a Signed Dominating Function (SDF) if <img src="Edit_c6e63805-bcaa-46a9-bc77-42750af8efd4.png" width="135" height="25" alt="" /> holds for all <img src="Edit_bba1b366-af70-46cd-aefe-fc68869da670.png" width="42" height="20" alt="" />. The signed domination number <img src="Edit_22e6d87a-e3be-4037-b4b6-c1de6a40abb0.png" width="284" height="25" alt="" />. In this paper, we determine the exact value of the Signed Domination Number of graphs <img src="Edit_36ef2747-da44-4f9b-a10a-340c61a3f28c.png" width="19" height="20" alt="" /> and <img src="Edit_26eb0f74-fcc2-49ad-8567-492cf3115b73.png" width="19" height="20" alt="" /> for <img src="Edit_856dbcc1-d215-4144-b50c-ac8a225d664f.png" width="32" height="20" alt="" />, which is generalized the known results, respectively, where <img src="Edit_4b7e4f8f-5d38-4fd0-ac4e-dd8ef243029f.png" width="19" height="20" alt="" /> and <img src="Edit_6557afba-e697-4397-994e-a9bda83e3219.png" width="19" height="20" alt="" /> are denotes the <em>k</em>-th power graphs of cycle <img src="Edit_27e6e80f-85d5-4208-b367-a757a0e55d0b.png" width="21" height="20" alt="" /> and path <img src="Edit_70ac5266-950b-4bfd-8d04-21711d3ffc33.png" width="18" height="20" alt="" />.
文摘Polysurfacic tori or kideas are three-dimensional objects formed by rotating a regular polygon around a central axis. These toric shapes are referred to as “polysurfacic” because their characteristics, such as the number of sides or surfaces separated by edges, can vary in a non-trivial manner depending on the degree of twisting during the revolution. We use the term “Kideas” to specifically denote these polysurfacic tori, and we represent the number of sides (referred to as “facets”) of the original polygon followed by a point, while the number of facets from which the torus is twisted during its revolution is indicated. We then explore the use of concave regular polygons to generate Kideas. We finally give acceleration for the algorithm for calculating the set of prime numbers.
文摘We generalize the congruences of Friedmann-Tamarkine (1909), Lehmer (1938), and Ernvall-Metsänkyla (1991) on the sums of powers of integers weighted by powers of the Fermat quotients to the next Fermat quotient power, namely to the third power of the Fermat quotient. Using this result and the Gessel identity (2005) combined with our past work (2021), we are able to relate residues of some truncated convolutions of Bernoulli numbers with some Ernvall-Metsänkyla residues to residues of some full convolutions of the same kind. We also establish some congruences concerning other related weighted sums of powers of integers when these sums are weighted by some analogs of the Teichmüller characters.