By virtue of the properties of bipartite entangled state representation we derive the common eigenvector of the parametric Hamiltonian and the two-mode number-difference operator. This eigenvector is superposition of ...By virtue of the properties of bipartite entangled state representation we derive the common eigenvector of the parametric Hamiltonian and the two-mode number-difference operator. This eigenvector is superposition of some definite two-mode Foek states with the coefficients being proportional to hypergeometric functions. The Gauss contiguous relation of hypergeometrie functions is used to confirm the formal solution.展开更多
In similar to the derivation of phase angle operator conjugate to the number operator by Arroyo Carrasco-Moya Cessay we deduce the Hermitian phase operators that are conjugate to the two-mode number-difference operato...In similar to the derivation of phase angle operator conjugate to the number operator by Arroyo Carrasco-Moya Cessay we deduce the Hermitian phase operators that are conjugate to the two-mode number-difference operatorand the three-mode number combination operator.It is shown that these operators are on the same footing in theentangled state representation as the one of Turski in the coherent state representation.展开更多
基金The project supported by The President Foundation of the Chinese Academy of Sciences
文摘By virtue of the properties of bipartite entangled state representation we derive the common eigenvector of the parametric Hamiltonian and the two-mode number-difference operator. This eigenvector is superposition of some definite two-mode Foek states with the coefficients being proportional to hypergeometric functions. The Gauss contiguous relation of hypergeometrie functions is used to confirm the formal solution.
基金National Natural Science Foundation of China under Grant No.10774108the Basic Research Fund of Jiangsu Teacher University of Technology
文摘In similar to the derivation of phase angle operator conjugate to the number operator by Arroyo Carrasco-Moya Cessay we deduce the Hermitian phase operators that are conjugate to the two-mode number-difference operatorand the three-mode number combination operator.It is shown that these operators are on the same footing in theentangled state representation as the one of Turski in the coherent state representation.