期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Physical Properties of Crushed Air-cooled Blast Furnace Slag and Numerical Representation of Its Morphology Characteristics 被引量:1
1
作者 王爱国 邓敏 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第5期973-978,共6页
Physical properties and geometrical morphologies of crushed air-cooled blast furnace slag (SCR) and crushed limestone (LCR) were comparatively investigated. The shape, angularity, surface texture and internal pore... Physical properties and geometrical morphologies of crushed air-cooled blast furnace slag (SCR) and crushed limestone (LCR) were comparatively investigated. The shape, angularity, surface texture and internal pore structure of aggregate particles for different size and gradation were numerically represented by sphericity (ψ) and shape index (SI), angularity number (AN), index of aggregate particle shape and texture (IAPST), porosity and pore size, respectively. The results show that SCR is a porous and rough aggregate. Apparent density, void, water absorption and smashing index of SCR are obviously higher than those of LCR with the same gradation, respectively. However, bulk density of SCR is lower than that of LCR with the same gradation. SI, AN, IAPST and porosity of SCR are obviously higher than those of LCR with the same gradation, respectively. The smaller particle size of SCR, the larger of its AN, IAPST and porosity. 展开更多
关键词 crushed air-cooled blast furnace slag crushed limestone physical property morphology characteristic numerical representation
下载PDF
Effects of Numerical Methods on the Calculation of Developing Plane Channel Flow
2
作者 Ronald M. C. So 《Journal of Applied Mathematics and Physics》 2022年第6期2086-2104,共19页
In wall-bounded turbulent flow calculations, the past focus has been directed to the modelling of the Reynolds-stress gradients. Not much attention has been paid to the effects of the numerical methods used to calcula... In wall-bounded turbulent flow calculations, the past focus has been directed to the modelling of the Reynolds-stress gradients. Not much attention has been paid to the effects of the numerical methods used to calculate these terms and the modelled equations. Discrepancies between model calculations and measurements are quite often attributed to incorrect modelling, while the suitability and accuracy of the numerical methods used are seldom scrutinized. Instead, alternate near-wall and Reynolds-stress models are proposed to remedy the incorrect turbulent flow calculations. On the other hand, if care is not taken in the numerical treatment of the Reynolds-stress gradient terms, physically unrealistic results and solution instability could occur. Previous studies by the author and his collaborators on the effects of numerical methods have shown that some of the more commonly used numerical methods could enhance numerical stability in the solution procedure but would introduce considerable inaccuracy to the results. The flow cases chosen to demonstrate these inaccuracies are a backstep flow and flow in a square duct, where flow complexities are present. The current investigation attempts to show that the above-mentioned effects of numerical methods could also occur in the calculation of a developing plane channel flow, where flow complexities are absent. In addition, this study shows that the results thus obtained lead to a predicted skin friction coefficient that is influenced more by the numerical method used than by the turbulence model invoked. Together, these results show that numerical treatment of the Reynolds-stress gradients in the equations play an important role, even for a developing plane channel flow. 展开更多
关键词 numerical representation of Pressure-Gradient Terms numerical representation of Stress-Gradient Terms numerical Grid Effects numerical Methods Effects Calculation of Plane Channel Flow
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部