The hot or cold processing would induce the change and the inhomogeneous of the material mechanical properties in the local processing region of the structure,and it is difficult to obtain the specific mechanical prop...The hot or cold processing would induce the change and the inhomogeneous of the material mechanical properties in the local processing region of the structure,and it is difficult to obtain the specific mechanical properties in these regions by using the traditional material tensile test.To accurately get actual material mechanical properties in the local region of structure,a micro-indentation test system incorporated by an electronic universal material test device has been established.An indenter displacement sensor and a group of special micro-indenter assemblies are estab-lished.A numerical indentation inversion analysis method by using ABAQUS software is also proposed in this study.Based on the above test system and analysis platform,an approach to obtaining material mechanical properties in the local region of structures is proposed and established.The ball indentation test is performed and combined with the energy method by using various changed mechanical properties of 316L austenitic stainless steel under differ-ent elongations.The investigated results indicate that the material mechanical properties and the micro-indentation morphological changes have evidently relevance.Compared with the tensile test results,the deviations of material mechanical parameters,such as hardness H,the hardening exponent n,the yield strength σy and others are within 5%obtained through the indentation test and the finite element analysis.It provides an effective and convenient method for obtaining the actual material mechanical properties in the local processing region of the structure.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.52075434)Key R&D Projects in Shaanxi Province(Grant No.2021KW-36).
文摘The hot or cold processing would induce the change and the inhomogeneous of the material mechanical properties in the local processing region of the structure,and it is difficult to obtain the specific mechanical properties in these regions by using the traditional material tensile test.To accurately get actual material mechanical properties in the local region of structure,a micro-indentation test system incorporated by an electronic universal material test device has been established.An indenter displacement sensor and a group of special micro-indenter assemblies are estab-lished.A numerical indentation inversion analysis method by using ABAQUS software is also proposed in this study.Based on the above test system and analysis platform,an approach to obtaining material mechanical properties in the local region of structures is proposed and established.The ball indentation test is performed and combined with the energy method by using various changed mechanical properties of 316L austenitic stainless steel under differ-ent elongations.The investigated results indicate that the material mechanical properties and the micro-indentation morphological changes have evidently relevance.Compared with the tensile test results,the deviations of material mechanical parameters,such as hardness H,the hardening exponent n,the yield strength σy and others are within 5%obtained through the indentation test and the finite element analysis.It provides an effective and convenient method for obtaining the actual material mechanical properties in the local processing region of the structure.