Applying stiffness migration method,a 3D finite element mechanical model is established to simulate the excavation and advance processes.By using 3D nonlinear finite element method,the tunnel boring machine(TBM) excav...Applying stiffness migration method,a 3D finite element mechanical model is established to simulate the excavation and advance processes.By using 3D nonlinear finite element method,the tunnel boring machine(TBM) excavation process is dynamically simulated to analyze the stress and strain field status of surrounding rock and segment.The maximum tensile stress of segment ring caused by tunnel construction mainly lies in arch bottom and presents zonal distribution.The stress increases slightly and limitedly in the course of excavation.The maximum and minimum displacements of segment,manifesting as zonal distribution,distribute in arch bottom and vault respectively.The displacements slightly increase with the advance of TBM and gradually tend to stability.展开更多
This paper attempts to investigate the use of approximate 2D numerical simulation techniques for the evaluation of lignite pillar geomechanical response, formed via the room and pillar mining method.Performance and ap...This paper attempts to investigate the use of approximate 2D numerical simulation techniques for the evaluation of lignite pillar geomechanical response, formed via the room and pillar mining method.Performance and applicability of the developing methodology are assessed through benchmarking with a more direct and accurate 3D numerical model. This analysis utilizes an underground lignite mine which is being developed in soft rock environment. Through the decisions made for the optimum room and pillar layout, the design process highlights the strong points and the weaknesses of 2D finite element analysis, and provides useful recommendations for future reference. The interpretations of results demonstrate that 2D approximation techniques come near quite well to the actual 3D problem.However, external load approximation technique seems to fit even better with the respective outcomes from the 3D analyses.展开更多
结合东坪金矿南山采区1号空区的工程实际,采用Plaxis 3D Tunnel对其建立三维数值模型,并对其不同开挖顺序的开挖过程进行数值模拟。通过对开采过程中的地压活动规律和围岩稳定性进行分析,论证了地下采空区开挖方案的可行性,揭示了采空...结合东坪金矿南山采区1号空区的工程实际,采用Plaxis 3D Tunnel对其建立三维数值模型,并对其不同开挖顺序的开挖过程进行数值模拟。通过对开采过程中的地压活动规律和围岩稳定性进行分析,论证了地下采空区开挖方案的可行性,揭示了采空区不同开挖阶段应力的集中部位和围岩的潜在破坏部位。计算表明该空区由上向下开挖顺序较为有利,其开挖过程总体可以保持稳定,但也存在不安全隐患。计算结果对该矿山的安全生产具有指导意义。展开更多
基金Supported by National Natural Science Foundation of China(No.90815019)National Key Basic Research Program of China("973" Program,No.2007CB714101)Key Project in the National Science and Technology Pillar Program during the Eleventh Five-Year Plan Period(No.2006BAB04A13)
文摘Applying stiffness migration method,a 3D finite element mechanical model is established to simulate the excavation and advance processes.By using 3D nonlinear finite element method,the tunnel boring machine(TBM) excavation process is dynamically simulated to analyze the stress and strain field status of surrounding rock and segment.The maximum tensile stress of segment ring caused by tunnel construction mainly lies in arch bottom and presents zonal distribution.The stress increases slightly and limitedly in the course of excavation.The maximum and minimum displacements of segment,manifesting as zonal distribution,distribute in arch bottom and vault respectively.The displacements slightly increase with the advance of TBM and gradually tend to stability.
文摘This paper attempts to investigate the use of approximate 2D numerical simulation techniques for the evaluation of lignite pillar geomechanical response, formed via the room and pillar mining method.Performance and applicability of the developing methodology are assessed through benchmarking with a more direct and accurate 3D numerical model. This analysis utilizes an underground lignite mine which is being developed in soft rock environment. Through the decisions made for the optimum room and pillar layout, the design process highlights the strong points and the weaknesses of 2D finite element analysis, and provides useful recommendations for future reference. The interpretations of results demonstrate that 2D approximation techniques come near quite well to the actual 3D problem.However, external load approximation technique seems to fit even better with the respective outcomes from the 3D analyses.
文摘结合东坪金矿南山采区1号空区的工程实际,采用Plaxis 3D Tunnel对其建立三维数值模型,并对其不同开挖顺序的开挖过程进行数值模拟。通过对开采过程中的地压活动规律和围岩稳定性进行分析,论证了地下采空区开挖方案的可行性,揭示了采空区不同开挖阶段应力的集中部位和围岩的潜在破坏部位。计算表明该空区由上向下开挖顺序较为有利,其开挖过程总体可以保持稳定,但也存在不安全隐患。计算结果对该矿山的安全生产具有指导意义。