The physical-cover-oriented variational principle of nonlinear numerical manifold method (NNMM) for the analysis of plastical problems is put forward according to the displacement model and the characters of numerical...The physical-cover-oriented variational principle of nonlinear numerical manifold method (NNMM) for the analysis of plastical problems is put forward according to the displacement model and the characters of numerical manifold method (NMM). The theoretical calculating formulations and the controlling equation of NNMM are derived. As an example, the plate with a hole in the center is calculated and the results show that the solution precision and efficiency of NNMM are agreeable.展开更多
The physical-cover-oriented variational principle of numerical manifold method (NMM) for the analysis of linear elastic static problems was put forward according to the displacement model and the characters of numeric...The physical-cover-oriented variational principle of numerical manifold method (NMM) for the analysis of linear elastic static problems was put forward according to the displacement model and the characters of numerical manifold method. ne theoretical calculating formulations and the controlling equation of NMM were derived. As an example, the plate with a hole in the center is calculated and the results show that the solution precision and efficiency of NMM are agreeable.展开更多
The three-dimensional numerical manifold method(NMM) is studied on the basis of two-dimensional numerical manifold method. The three-dimensional cover displacement function is studied. The mechanical analysis and Ha...The three-dimensional numerical manifold method(NMM) is studied on the basis of two-dimensional numerical manifold method. The three-dimensional cover displacement function is studied. The mechanical analysis and Hammer integral method of three-dimensional numerical manifold method are put forward. The stiffness matrix of three-dimensional manifold element is derived and the dissection rules are given. The theoretical system and the numerical realizing method of three-dimensional numerical manifold method are systematically studied. As an example, the cantilever with load on the end is calculated, and the results show that the precision and efficiency are agreeable.展开更多
The numerical manifold method (NMM) can calculate the movements and deformations of structures or materials. Both the finite element method (FEM) for continua and the discontinuous deformation analysis (DDA) for...The numerical manifold method (NMM) can calculate the movements and deformations of structures or materials. Both the finite element method (FEM) for continua and the discontinuous deformation analysis (DDA) for block systems are special cases of NMM. NMM has separate mathematical covers and physical meshes: the mathematical covers define only fine or rough approximations; as the real material boundary, the physical mesh defines the integration fields. The mathematical covers are triangle units; the physical mesh includes the fault boundaries, joints, blocks and interfaces of different crust zones on the basis of a geological tectonic background. Aiming at the complex problem of continuous and discontinuous deformation across the Chinese continent, the numerical manifold method (NMM) is brought in to study crustal movement of the Stchuan-Yunnan area. Based on the GPS velocity field in the Sichuan-Yunnan area, a crustal strain and stress field is simulated and analyzed. Moreover, results show that the NMM is a more suitable method than DDA in simulating the movement of the Sichuan-Yunnan area. Finally, a kind of mechanism of crustal motion in the Sichuan-Yunnan area is discussed in the paper.展开更多
The three-dimensional numerical manifold method(3D-NMM),which is based on the derivation of Galerkin's variation,is a powerful calculation tool that uses two cover systems.The 3D-NMM can be used to handle continue...The three-dimensional numerical manifold method(3D-NMM),which is based on the derivation of Galerkin's variation,is a powerful calculation tool that uses two cover systems.The 3D-NMM can be used to handle continue-discontinue problems and extend to THM coupling.In this study,we extended the 3D-NMM to simulate both steady-state and transient heat conduction problems.The modelling was carried out using the raster methods(RSM).For the system equation,a variational method was employed to drive the discrete equations,and the crucial boundary conditions were solved using the penalty method.To solve the boundary integral problem,the face integral of scalar fields and two-dimensional simplex integration were used to accurately describe the integral on polygonal boundaries.Several numerical examples were used to verify the results of 3D steady-state and transient heat-conduction problems.The numerical results indicated that the 3D-NMM is effective for handling 3D both steadystate and transient heat conduction problems with high solution accuracy.展开更多
In this paper,we first establish a new fractional magnetohydrodynamic(MHD)coupled flow and heat transfer model for a generalized second-grade fluid.This coupled model consists of a fractional momentum equation and a h...In this paper,we first establish a new fractional magnetohydrodynamic(MHD)coupled flow and heat transfer model for a generalized second-grade fluid.This coupled model consists of a fractional momentum equation and a heat conduction equation with a generalized form of Fourier law.The second-order fractional backward difference formula is applied to the temporal discretization and the Legendre spectral method is used for the spatial discretization.The fully discrete scheme is proved to be stable and convergent with an accuracy of O(τ^(2)+N-r),whereτis the time step-size and N is the polynomial degree.To reduce the memory requirements and computational cost,a fast method is developed,which is based on a globally uniform approximation of the trapezoidal rule for integrals on the real line.The strict convergence of the numerical scheme with this fast method is proved.We present the results of several numerical experiments to verify the effectiveness of the proposed method.Finally,we simulate the unsteady fractional MHD flow and heat transfer of the generalized second-grade fluid through a porous medium.The effects of the relevant parameters on the velocity and temperature are presented and analyzed in detail.展开更多
The parallel multisection method for solving algebraic eigenproblem has been presented in recent years with the development of the parallel computers, but all the research work is limited in standard eigenproblems of ...The parallel multisection method for solving algebraic eigenproblem has been presented in recent years with the development of the parallel computers, but all the research work is limited in standard eigenproblems of symmetric tridiagonal matrix. The multisection method for solving the generalized eigenproblem applied significantly in many science and engineering domains has not been studied. The parallel region preserving multisection method (PRM for short) for solving generalized eigenproblems of large sparse and real symmetric matrix is presented in this paper. This method not only retains the advantages of the conventional determinant search method (DS for short), but also overcomes its disadvantages such as leaking roots and disconvergence. We have tested the method on the YH 1 vector computer, and compared it with the parallel region preserving determinant search method the parallel region preserving bisection method (PRB for short). The numerical results show that PRM has a higher speed up, for instance, it attains the speed up of 7.7 when the scale of the problem is 2 114 and the eigenpair found is 3, and PRM is superior to PRB when the scale of the problem is large.展开更多
In this study, numerical manifold method(NMM) coupled with non-uniform rational B-splines(NURBS) and T-splines in the context of isogeometric analysis is proposed to allow for the treatments of complex geometries and ...In this study, numerical manifold method(NMM) coupled with non-uniform rational B-splines(NURBS) and T-splines in the context of isogeometric analysis is proposed to allow for the treatments of complex geometries and local refinement. Computational formula for a 9-node NMM based on quadratic B-splines is derived. In order to exactly represent some common free-form shapes such as circles, arcs, and ellipsoids, quadratic non-uniform rational B-splines(NURBS) are introduced into NMM. The coordinate transformation based on the basis function of NURBS is established to enable exact integration for the manifold elements containing those shapes. For the case of crack propagation problems where singular fields around crack tips exist, local refinement technique by the application of T-spline discretizations is incorporated into NMM, which facilitates a truly local refinement without extending the entire row of control points. A local refinement strategy for the 4-node mathematical cover mesh based on T-splines and Lagrange interpolation polynomial is proposed. Results from numerical examples show that the 9-node NMM based on NURBS has higher accuracies. The coordinate transformation based on the NURBS basis function improves the accuracy of NMM by exact integration. The local mesh refinement using T-splines reduces the number of degrees of freedom while maintaining calculation accuracy at the same time.展开更多
In order to reach the best numerical properties with the numerical manifold method(NMM),uniform finite element meshes are always favorite while constructing mathematical covers,where all the elements are congruent.In ...In order to reach the best numerical properties with the numerical manifold method(NMM),uniform finite element meshes are always favorite while constructing mathematical covers,where all the elements are congruent.In the presence of steep gradients or strong singularities,in principle,the locally-defined special functions can be added into the NMM space by means of the partition of unity,but they are not available to those complex problems with heterogeneity or nonlinearity,necessitating local refinement on uniform meshes.This is believed to be one of the most important open issues in NMM.In this study multilayer covers are proposed to solve this issue.In addition to the first layer cover which is the global cover and covers the whole problem domain,the second and higher layer covers with smaller elements,called local covers,are used to cover those local regions with steep gradients or strong singularities.The global cover and the local covers have their own partition of unity,and they all participate in the approximation to the solution.Being advantageous over the existing procedures,the proposed approach is easy to deal with any arbitrary-layer hanging nodes with no need to construct super-elements with variable number of edge nodes or introduce the Lagrange multipliers to enforce the continuity between small and big elements.With no limitation to cover layers,meanwhile,the creation of an even error distribution over the whole problem domain is significantly facilitated.Some typical examples with steep gradients or strong singularities are analyzed to demonstrate the capacity of the proposed approach.展开更多
The numerical manifold method(NMM) features its dual cover systems, namely the mathematical cover and physical cover,which provide a unified framework for mechanics problems involving continuum and discontinuum deform...The numerical manifold method(NMM) features its dual cover systems, namely the mathematical cover and physical cover,which provide a unified framework for mechanics problems involving continuum and discontinuum deformation. Uniform finite element meshes can be and are usually used to construct the mathematical cover. Though this strategy can handle different kinds of problems in a unified way, it is not economical for cases with steep deformation gradients or singularities. In this paper, using the recovery-based error estimator, an h-adaptive NMM on quadtree meshes is proposed to deal with such cases. The quadtree meshes serve as the mathematical meshes, on which the local refinement is carried out. When the quadtree meshes are refined,the corresponding mathematical cover, physical cover and manifold elements are updated accordingly. To handle the hanging nodes in the quadtree meshes, we resort to mean value coordinates. Comparing to the refinement based on manifold elements,the proposed strategy guarantees consistent structured meshes throughout the adaptive process, thus retaining the unique feature of original NMM. In contrast with polygonal finite element method, an advantage of the proposed method is that the meshes do not need to conform to the crack face and material boundary, which means the adaptive NMM is very suitable for problems with complex geometric boundary. Several representative mechanics problems, including crack problems, are analyzed to investigate the effectiveness of the proposed method. It is demonstrated that the proposed adaptive NMM has higher accuracy and better performance comparing to uniform refinement strategy.展开更多
Aiming to solve mesh generation,computational stability,accuracy control,and other problems encountered with existing numerical methods,such as the finite element method and the finite volume method,a new numerical co...Aiming to solve mesh generation,computational stability,accuracy control,and other problems encountered with existing numerical methods,such as the finite element method and the finite volume method,a new numerical computational method for continuum mechanics,namely the manifold method based on independent covers(MMIC),is proposed based on the concept of mathematical manifolds,to form partitioned series solutions of partial differential equations.As partitions,the cover meshes have the characteristics of arbitrary shape,arbitrary connection,and arbitrary refinement.They are expected to fundamentally solve the mesh generation problem and can also simulate the precise geometric boundaries of the CAD model and strictly impose boundary conditions.In the selection of series solutions,local analytical solutions(such as series solutions at crack tips and series solutions in infinite domains)or proper forms of complete series can be used to reflect the local or global characteristics of the physical field to accelerate convergence.Various applications are presented.A new method of beam,plate,and shell analysis is proposed.The deformation characteristics of beams,plates,and shells are simulated with polynomial series of suitable forms,and the analysis of curved beams and shells with accurate geometric representation is realized.For the static elastic analysis of two-dimensional structures,a mesh splitting algorithm is proposed,and h-p version adaptive analysis is carried out with error estimation.Thus,automatic computation integrated with CAD is attempted.Adaptive analysis is also attempted for the solution of differential equations of fluids.For the one-dimensional convection-diffusion equation and Burgers equation,calculation results with high precision are obtained in strong convection and shock wave simulations,avoiding nonphysical oscillations.And solving the two-dimensional incompressible Navier-Stokes equation is also attempted.The series solution formula is used to obtain the physical quantity of interest of the material at a space point to eliminate the convection terms.Thus,geometrically nonlinear problems can be analyzed in fixed meshes,and a new method of free surface tracking is proposed.展开更多
文摘The physical-cover-oriented variational principle of nonlinear numerical manifold method (NNMM) for the analysis of plastical problems is put forward according to the displacement model and the characters of numerical manifold method (NMM). The theoretical calculating formulations and the controlling equation of NNMM are derived. As an example, the plate with a hole in the center is calculated and the results show that the solution precision and efficiency of NNMM are agreeable.
文摘The physical-cover-oriented variational principle of numerical manifold method (NMM) for the analysis of linear elastic static problems was put forward according to the displacement model and the characters of numerical manifold method. ne theoretical calculating formulations and the controlling equation of NMM were derived. As an example, the plate with a hole in the center is calculated and the results show that the solution precision and efficiency of NMM are agreeable.
文摘The three-dimensional numerical manifold method(NMM) is studied on the basis of two-dimensional numerical manifold method. The three-dimensional cover displacement function is studied. The mechanical analysis and Hammer integral method of three-dimensional numerical manifold method are put forward. The stiffness matrix of three-dimensional manifold element is derived and the dissection rules are given. The theoretical system and the numerical realizing method of three-dimensional numerical manifold method are systematically studied. As an example, the cantilever with load on the end is calculated, and the results show that the precision and efficiency are agreeable.
基金Supported by the National Natural Science Foundation of China (N0.40574006, N0.40344023), DGLIGG (L04-02).
文摘The numerical manifold method (NMM) can calculate the movements and deformations of structures or materials. Both the finite element method (FEM) for continua and the discontinuous deformation analysis (DDA) for block systems are special cases of NMM. NMM has separate mathematical covers and physical meshes: the mathematical covers define only fine or rough approximations; as the real material boundary, the physical mesh defines the integration fields. The mathematical covers are triangle units; the physical mesh includes the fault boundaries, joints, blocks and interfaces of different crust zones on the basis of a geological tectonic background. Aiming at the complex problem of continuous and discontinuous deformation across the Chinese continent, the numerical manifold method (NMM) is brought in to study crustal movement of the Stchuan-Yunnan area. Based on the GPS velocity field in the Sichuan-Yunnan area, a crustal strain and stress field is simulated and analyzed. Moreover, results show that the NMM is a more suitable method than DDA in simulating the movement of the Sichuan-Yunnan area. Finally, a kind of mechanism of crustal motion in the Sichuan-Yunnan area is discussed in the paper.
基金supported by the National Natural Science Foundation of China(Grant Nos.42277165,41920104007,and 41731284)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Grant Nos.CUGCJ1821 and CUGDCJJ202234)the National Overseas Study Fund(Grant No.202106410040)。
文摘The three-dimensional numerical manifold method(3D-NMM),which is based on the derivation of Galerkin's variation,is a powerful calculation tool that uses two cover systems.The 3D-NMM can be used to handle continue-discontinue problems and extend to THM coupling.In this study,we extended the 3D-NMM to simulate both steady-state and transient heat conduction problems.The modelling was carried out using the raster methods(RSM).For the system equation,a variational method was employed to drive the discrete equations,and the crucial boundary conditions were solved using the penalty method.To solve the boundary integral problem,the face integral of scalar fields and two-dimensional simplex integration were used to accurately describe the integral on polygonal boundaries.Several numerical examples were used to verify the results of 3D steady-state and transient heat-conduction problems.The numerical results indicated that the 3D-NMM is effective for handling 3D both steadystate and transient heat conduction problems with high solution accuracy.
基金supported by the Project of the National Key R&D Program(Grant No.2021YFA1000202)National Natural Science Foundation of China(Grant Nos.12120101001,12001326 and 12171283)+2 种基金Natural Science Foundation of Shandong Province(Grant Nos.ZR2021ZD03,ZR2020QA032 and ZR2019ZD42)China Postdoctoral Science Foundation(Grant Nos.BX20190191 and 2020M672038)the Startup Fund from Shandong University(Grant No.11140082063130)。
文摘In this paper,we first establish a new fractional magnetohydrodynamic(MHD)coupled flow and heat transfer model for a generalized second-grade fluid.This coupled model consists of a fractional momentum equation and a heat conduction equation with a generalized form of Fourier law.The second-order fractional backward difference formula is applied to the temporal discretization and the Legendre spectral method is used for the spatial discretization.The fully discrete scheme is proved to be stable and convergent with an accuracy of O(τ^(2)+N-r),whereτis the time step-size and N is the polynomial degree.To reduce the memory requirements and computational cost,a fast method is developed,which is based on a globally uniform approximation of the trapezoidal rule for integrals on the real line.The strict convergence of the numerical scheme with this fast method is proved.We present the results of several numerical experiments to verify the effectiveness of the proposed method.Finally,we simulate the unsteady fractional MHD flow and heat transfer of the generalized second-grade fluid through a porous medium.The effects of the relevant parameters on the velocity and temperature are presented and analyzed in detail.
文摘The parallel multisection method for solving algebraic eigenproblem has been presented in recent years with the development of the parallel computers, but all the research work is limited in standard eigenproblems of symmetric tridiagonal matrix. The multisection method for solving the generalized eigenproblem applied significantly in many science and engineering domains has not been studied. The parallel region preserving multisection method (PRM for short) for solving generalized eigenproblems of large sparse and real symmetric matrix is presented in this paper. This method not only retains the advantages of the conventional determinant search method (DS for short), but also overcomes its disadvantages such as leaking roots and disconvergence. We have tested the method on the YH 1 vector computer, and compared it with the parallel region preserving determinant search method the parallel region preserving bisection method (PRB for short). The numerical results show that PRM has a higher speed up, for instance, it attains the speed up of 7.7 when the scale of the problem is 2 114 and the eigenpair found is 3, and PRM is superior to PRB when the scale of the problem is large.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2014CB047100)the National Natural Science Foundation of China(Grant No.41372316)
文摘In this study, numerical manifold method(NMM) coupled with non-uniform rational B-splines(NURBS) and T-splines in the context of isogeometric analysis is proposed to allow for the treatments of complex geometries and local refinement. Computational formula for a 9-node NMM based on quadratic B-splines is derived. In order to exactly represent some common free-form shapes such as circles, arcs, and ellipsoids, quadratic non-uniform rational B-splines(NURBS) are introduced into NMM. The coordinate transformation based on the basis function of NURBS is established to enable exact integration for the manifold elements containing those shapes. For the case of crack propagation problems where singular fields around crack tips exist, local refinement technique by the application of T-spline discretizations is incorporated into NMM, which facilitates a truly local refinement without extending the entire row of control points. A local refinement strategy for the 4-node mathematical cover mesh based on T-splines and Lagrange interpolation polynomial is proposed. Results from numerical examples show that the 9-node NMM based on NURBS has higher accuracies. The coordinate transformation based on the NURBS basis function improves the accuracy of NMM by exact integration. The local mesh refinement using T-splines reduces the number of degrees of freedom while maintaining calculation accuracy at the same time.
基金supported by the National Basic Research Program of China("973"Project)(Grant Nos.2011CB013505&2014CB047100)the National Natural Science Foundation of China(Grant Nos.11572009&51538001)
文摘In order to reach the best numerical properties with the numerical manifold method(NMM),uniform finite element meshes are always favorite while constructing mathematical covers,where all the elements are congruent.In the presence of steep gradients or strong singularities,in principle,the locally-defined special functions can be added into the NMM space by means of the partition of unity,but they are not available to those complex problems with heterogeneity or nonlinearity,necessitating local refinement on uniform meshes.This is believed to be one of the most important open issues in NMM.In this study multilayer covers are proposed to solve this issue.In addition to the first layer cover which is the global cover and covers the whole problem domain,the second and higher layer covers with smaller elements,called local covers,are used to cover those local regions with steep gradients or strong singularities.The global cover and the local covers have their own partition of unity,and they all participate in the approximation to the solution.Being advantageous over the existing procedures,the proposed approach is easy to deal with any arbitrary-layer hanging nodes with no need to construct super-elements with variable number of edge nodes or introduce the Lagrange multipliers to enforce the continuity between small and big elements.With no limitation to cover layers,meanwhile,the creation of an even error distribution over the whole problem domain is significantly facilitated.Some typical examples with steep gradients or strong singularities are analyzed to demonstrate the capacity of the proposed approach.
基金supported by the National Natural Science Foundation of China(Grant Nos.11602165&51479131)Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z015010)the Natural Science Fund of Tianjin City(Grant No.16JCQNJC07800)
文摘The numerical manifold method(NMM) features its dual cover systems, namely the mathematical cover and physical cover,which provide a unified framework for mechanics problems involving continuum and discontinuum deformation. Uniform finite element meshes can be and are usually used to construct the mathematical cover. Though this strategy can handle different kinds of problems in a unified way, it is not economical for cases with steep deformation gradients or singularities. In this paper, using the recovery-based error estimator, an h-adaptive NMM on quadtree meshes is proposed to deal with such cases. The quadtree meshes serve as the mathematical meshes, on which the local refinement is carried out. When the quadtree meshes are refined,the corresponding mathematical cover, physical cover and manifold elements are updated accordingly. To handle the hanging nodes in the quadtree meshes, we resort to mean value coordinates. Comparing to the refinement based on manifold elements,the proposed strategy guarantees consistent structured meshes throughout the adaptive process, thus retaining the unique feature of original NMM. In contrast with polygonal finite element method, an advantage of the proposed method is that the meshes do not need to conform to the crack face and material boundary, which means the adaptive NMM is very suitable for problems with complex geometric boundary. Several representative mechanics problems, including crack problems, are analyzed to investigate the effectiveness of the proposed method. It is demonstrated that the proposed adaptive NMM has higher accuracy and better performance comparing to uniform refinement strategy.
基金supported by the Fundamental Research Funds for Central Public Welfare Research Institutes in China(Grant Nos.CKSF2010012/CL,CKSF2013031/CL,CKSF2014054/CL,CKSF2015033/CL,and CKSF2016022/CL)。
文摘Aiming to solve mesh generation,computational stability,accuracy control,and other problems encountered with existing numerical methods,such as the finite element method and the finite volume method,a new numerical computational method for continuum mechanics,namely the manifold method based on independent covers(MMIC),is proposed based on the concept of mathematical manifolds,to form partitioned series solutions of partial differential equations.As partitions,the cover meshes have the characteristics of arbitrary shape,arbitrary connection,and arbitrary refinement.They are expected to fundamentally solve the mesh generation problem and can also simulate the precise geometric boundaries of the CAD model and strictly impose boundary conditions.In the selection of series solutions,local analytical solutions(such as series solutions at crack tips and series solutions in infinite domains)or proper forms of complete series can be used to reflect the local or global characteristics of the physical field to accelerate convergence.Various applications are presented.A new method of beam,plate,and shell analysis is proposed.The deformation characteristics of beams,plates,and shells are simulated with polynomial series of suitable forms,and the analysis of curved beams and shells with accurate geometric representation is realized.For the static elastic analysis of two-dimensional structures,a mesh splitting algorithm is proposed,and h-p version adaptive analysis is carried out with error estimation.Thus,automatic computation integrated with CAD is attempted.Adaptive analysis is also attempted for the solution of differential equations of fluids.For the one-dimensional convection-diffusion equation and Burgers equation,calculation results with high precision are obtained in strong convection and shock wave simulations,avoiding nonphysical oscillations.And solving the two-dimensional incompressible Navier-Stokes equation is also attempted.The series solution formula is used to obtain the physical quantity of interest of the material at a space point to eliminate the convection terms.Thus,geometrically nonlinear problems can be analyzed in fixed meshes,and a new method of free surface tracking is proposed.