期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
Numerical simulation and experimental verification of plasma jet development in gas gap switch
1
作者 董冰冰 郭志远 +2 位作者 张泽霖 文韬 向念文 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第5期159-169,共11页
Plasma jet triggered gas gap switch has obvious advantages in fast control switch.The development of the plasma in the ambient medium is the key factor affecting the triggering conduction of the gas switch.However,the... Plasma jet triggered gas gap switch has obvious advantages in fast control switch.The development of the plasma in the ambient medium is the key factor affecting the triggering conduction of the gas switch.However,the plasma jet process and its characteristic parameters are complicated and the existing test methods cannot fully characterize its development laws.In this work,a two-dimensional transient fluid calculation model of the plasma jet process of the gas gap switch is established based on the renormalization-group k-εturbulence equation.The results show that the characteristic parameters and morphological evolution of the plasma jet are basically consistent with the experimental results,which verifies the accuracy of the simulation model calculation.The plasma jet is a long strip with an initial velocity of 1.0 km·s-1and develops in both axial and radial directions.The jet velocity fluctuates significantly with axial height.As the plasma jet enters the main gap,the pressure inside the trigger cavity drops by80%,resulting in a rapid drop in the jet velocity.When the plasma jet head interacts with the atmosphere,the two-phase fluid compresses each other,generating a forward-propelled pressure wave.The plasma jet heads flow at high velocity,a negative pressure zone is formed in the middle part of the jet,and the pressure peak decreases gradually with height.As the value of the inlet pressure increases,the characteristic parameters of the plasma jet increase.The entrainment phenomenon is evident,which leads to an increase in the pressure imbalance of the atmospheric gas medium,leading to a significant Coanda effect.Compared with air,the characteristic parameters of a plasma jet in SF6are lower,and the morphological evolution is significantly suppressed.The results of this study can provide some insight into the mechanism of action of the switch jet plasma development process. 展开更多
关键词 gas gap switch plasma jet k-εturbulence model numerical calculation experimental verification
下载PDF
Numerical and experimental study on the response characteristics of warhead in the fast cook-off process 被引量:3
2
作者 Min Zhu Sheng-ao Wang +5 位作者 Huang Huang Gui Huang Fei Wu Shao-hua Sun Biao Li Zi-jian Xu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1444-1452,共9页
The response characteristics of the warhead under thermal stimuli conditions are important to the safety improvement.The goal of this study is to obtain data on the warhead in the fast cook-off process.In this paper,a... The response characteristics of the warhead under thermal stimuli conditions are important to the safety improvement.The goal of this study is to obtain data on the warhead in the fast cook-off process.In this paper,a numerical calculation method is proposed,whose reliability is supported by comparison with experimental results.Through the numerical calculation,the temperature distribution,temperature change,and ignition time are acquired.The numerical results show that the ignition time is 76 s after the warhead started to burn and that the maximum temperature of the explosive’s outer surface is 238.3℃ at the ignition time.The fast cook-off experiment of the warhead is implemented so as to get the flame temperature and reaction grades that are not available through numerical calculation.The experimental results show that the overpressure fails to reach the preset minimumvalue which is equivalent to 6 kg of TNT and that the reaction grade is deflagration.The research results have reference value for the design of the warhead and the reduction of detonation risks. 展开更多
关键词 WARHEAD Explosives Fast cook-off numerical calculations
下载PDF
Numerical Calculation of Seafloor Synthetic Seismograms Caused by Low Frequency Point Sound Source 被引量:4
3
作者 LU Zaihua ZHANG Zhihong GU Jiannong 《Defence Technology(防务技术)》 SCIE EI CAS 2013年第2期125-132,共8页
Elastic wave on seafloor caused by low frequency noise radiated from ship is called ship seismic wave which can be used to identify ship target. In order to analyze the wave components and the propagating properties o... Elastic wave on seafloor caused by low frequency noise radiated from ship is called ship seismic wave which can be used to identify ship target. In order to analyze the wave components and the propagating properties of ship seismic wave, the numerical calculation of synthetic seismograms on seafloor aroused by a low frequency point sound source is carried out using a wave number integration technique combined with inverse Fourier transform. According to the numerical example of hard seafloor, the time series of seismic wave on seafloor are mostly composed of interface waves and normal mode waves. Each normal mode wave has a well defined low cut-off frequency, while the interface wave doesn't have. The frequency dispersion of normal mode wave is obvious when frequency is lower than 100Hz, while the interface wave is dispersive only in the infra-sound frequency range. The time series of seismic wave is dominated by the interface wave when the source frequency is less than the minimal cut-off frequency of normal mode wave. 展开更多
关键词 maritime engineering low frequency point sound source seismic wave synthetic seismogram numerical calculation
下载PDF
Numerical Study on Scale Effect of Form Factor for DTMB5415, KCS,KVLCC2, and 4000TEU Container Ship 被引量:2
4
作者 WANG Zhan-zhi MIN Shao-song PENG Fei 《China Ocean Engineering》 SCIE EI CSCD 2021年第5期767-778,共12页
Four ships,a twin-propeller naval ship,two single-propeller container ships,and a single-propeller very large crude carrier(VLCC),were studied to investigate the scale effect of the form factor.The viscous flow fields... Four ships,a twin-propeller naval ship,two single-propeller container ships,and a single-propeller very large crude carrier(VLCC),were studied to investigate the scale effect of the form factor.The viscous flow fields of the ships at different scales were solved numerically via the Reynolds-averaged Navier–Stokes method combined with the shear stress transport k–ωturbulence model.The numerical method was validated through comparisons with experimental data,and numerical uncertainty analysis was carried out based on the ITTC recommended procedure.On this basis,scale effects of the form factor were analyzed using different friction lines,and scale effects of flow fields and the mean axial wake fractions were further analyzed in details.The results showed that the form factor exhibited scale effects when adopting the ITTC-1957 line,and it increased with the increase in the Reynolds number.The scale effect of the form factor reduces the prediction precision of the full-scale ship resistance.The friction line has a significant effect on the form factor.The form factor exhibits little dependence on the Reynolds number when using the numerical friction line or the Katsui line,which is useful for full-scale ship resistance predictions.With the increasing Reynolds number,the boundary layer thickness becomes thinner and the axial velocity contour contracts toward the center plane,and there is nearly a linear relationship between the reciprocal of mean axial wake fraction on propeller disc and Reynolds number in logarithmic scale for the three types of ship forms. 展开更多
关键词 form factor scale effect ITTC-1957 line numerical calculation flow field
下载PDF
Numerical Calculation for Nonlinear Waves in Water of Arbitrarily Varying Depth with Boussinesq Equations 被引量:1
5
作者 朱良生 洪广文 《China Ocean Engineering》 SCIE EI 2001年第3期355-369,共15页
Based on the high order nonlinear and dispersive wave equation with a dissipative term, a numerical model for nonlinear waves is developed. It is suitable to calculate wave propagation in water areas with an arbitrari... Based on the high order nonlinear and dispersive wave equation with a dissipative term, a numerical model for nonlinear waves is developed. It is suitable to calculate wave propagation in water areas with an arbitrarily varying bottom slope and a relative depth h/L0≤1. By the application of the completely implicit stagger grid and central difference algorithm, discrete governing equations are obtained. Although the central difference algorithm of second-order accuracy both in time and space domains is used to yield the difference equations, the order of truncation error in the difference equation is the same as that of the third-order derivatives of the Boussinesq equation. In this paper, the correction to the first-order derivative is made, and the accuracy of the difference equation is improved. The verifications of accuracy show that the results of the numerical model are in good agreement with those of analytical solutions and physical models. 展开更多
关键词 nonlinear wave Boussinesq equation arbitrarily varying depth numerical calculation
下载PDF
Numerical Study on Aerodynamic Characteristics of Ducted Fan Aircraft 被引量:1
6
作者 范宁军 徐嘉 杨继伟 《Journal of Beijing Institute of Technology》 EI CAS 2010年第1期19-24,共6页
Based on investigations into the flow field of ducted fan aircrafts,structural parameters of duct are quantified.A three-dimensional model is established for numerical simulation,and adaptive Cartesian grid is used to... Based on investigations into the flow field of ducted fan aircrafts,structural parameters of duct are quantified.A three-dimensional model is established for numerical simulation,and adaptive Cartesian grid is used to mesh the model in order to improve calculation speed and solution accuracy.Three-dimensional Navier-Stokes equations are brought in to analyze different duct styles.Generalization of simulation results leads to several conclusions in duct aerodynamics to help design ducted fan aircrafts. 展开更多
关键词 ducted fan aircraft aerodynamic characteristics structural parameter numerical calculation
下载PDF
Numerical Simulation of Tidal Current in a Bay
7
作者 曾一非 《China Ocean Engineering》 SCIE EI 2000年第1期121-128,共8页
—Based on the multilevel model,numerical calculations of tidal current affected by the M_2 tidein the Tokyo Bay have been carried out.The results of calculation are compared with the data observed inthe Tokyo Bay and... —Based on the multilevel model,numerical calculations of tidal current affected by the M_2 tidein the Tokyo Bay have been carried out.The results of calculation are compared with the data observed inthe Tokyo Bay and the result calculated by an approximate formula as the Tokyo Bay is regarded as a rec-tangular bay,and good agreement is found.It is proved that the mathematical model and the calculationmethod are correct and useable. 展开更多
关键词 multilevel model Navier-Stokes equations M2 tide numerical calculation
下载PDF
An improved numerical model of ski-jump flood discharge atomization
8
作者 LIAN Ji-jian ZHANG Shu-guang HE Jun-ling 《Journal of Mountain Science》 SCIE CSCD 2022年第5期1263-1273,共11页
Atomizing rainfall caused by flood discharge of high dams poses a great threat to the safety of powerhouse and ecological environment.As an indispensable means,numerical calculation is widely used in the safety design... Atomizing rainfall caused by flood discharge of high dams poses a great threat to the safety of powerhouse and ecological environment.As an indispensable means,numerical calculation is widely used in the safety design of discharge structures.The distribution of rainfall intensity is closely related to the trajectory nappe shape,jet trajectory distances,the splashed water droplet diameter and its velocity,and the spatial distribution of downstream nappe wind.In this paper,an experimental result is used to verify the improved stochastic splash mathematical model under different bucket types and discharge conditions,and the sensitivity of downstream rainfall intensity distribution to the shape of trajectory nappe,discharge flow,spatial distribution of downstream nappe wind,and the corresponding relationship between the droplet diameter and its splashing velocity is analyzed.The results show that the calculation accuracy of downstream rainfall intensity distribution is significantly improved when the above factors are taken into consideration.It is found that the bucket type and flood discharge rate play the greatest role in the rainfall intensity distribution,followed by the downstream nappe wind distribution,and finally the corresponding relationship between the diameter and velocity of splash droplets.Therefore,these factors should be considered comprehensively when the rainfall intensity distribution of flood discharge atomization is calculated.This study can help us to understand the influence factors of flood discharge atomization more deeply and predict the distribution of flood discharge atomization rainfall intensity more accurately. 展开更多
关键词 Flood discharge atomization Rainfall intensity distribution numerical calculation Sensitivity analysis
下载PDF
Aero-thermo-elastic Numerical Calculation and Analysis of Spinning Rocket
9
作者 陈东阳 Laith K.Abbas +2 位作者 芮筱亭 Marzocca Piergiovanni 王国平 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第6期681-687,共7页
The application of computational fluid dynamics/computational solid method(CFD/CSM)on solving the aero-thermo-elastic problem of spinning rocket is introduced.Firstly,the aerodynamic coefficients of a rocket are calcu... The application of computational fluid dynamics/computational solid method(CFD/CSM)on solving the aero-thermo-elastic problem of spinning rocket is introduced.Firstly,the aerodynamic coefficients of a rocket are calculated,and the results are compared with the available experimental data,which verified the accuracy of the CFD output.Then,analysis is carried using ANSYS Workbench multi-physics coupling platform,which includes fluid,thermal,and structural solvers.The results show that spinning causes a significant effect on the deformations and stresses.Furthermore,thermal stresses due to high temperature at the rocket warhead and tail edges have a dominated effect,even more than those produced by aerodynamic forces.Consequently,this important outcome should be taken into consideration during the rocket design stages. 展开更多
关键词 ANSYS Workbench numerical calculation thermal stress SPINNING
下载PDF
Coupled Time-Domain Investigation on a Vertical Axis Wind Turbine Supported on a Floating Platform 被引量:1
10
作者 CUI Jianhui ZHAI Yongjian +2 位作者 GUO Ying DENG Wanru LIU Liqin 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第2期365-376,共12页
The dynamic responses of a floating vertical axis wind turbine(VAWT)are assessed on the basis of an aero-hydro-mooring coupled model.The aerodynamic loads on the rotor are acquired with double-multiple stream tube met... The dynamic responses of a floating vertical axis wind turbine(VAWT)are assessed on the basis of an aero-hydro-mooring coupled model.The aerodynamic loads on the rotor are acquired with double-multiple stream tube method.First-and second-order wave loads are calculated on the basis of 3D potential theory.The mooring loads are simulated by catenary theory.The coupled model is established,and a numerical code is programmed to investigate the dynamic response of the semi-submersible VAWT.A model test is then conducted,and the numerical code is validated considering the hydrodynamic performance of the floating buoy.The responses of the floating VAWT are studied through the numerical simulation under the sea states of wind and regular/irregular waves.The effects of the second-order wave force on the motions are also investigated.Results show that the slow-drift responses in surge and pitch motions are significantly excited by the second-order wave forces.Furthermore,the effect of foundation motion on aerodynamic loads is examined.The normal and tangential forces of the blades demonstrate a slight increase due to the coupling effect between the buoy motion and the aerodynamic loads. 展开更多
关键词 offshore wind power semi-submersible floating foundation vertical axis wind turbine numerical calculation model test
下载PDF
Application of Two-dimensional Viscous CE/SE Method in Calculation of Two-phase Detonation 被引量:6
11
作者 马丹花 翁春生 《Defence Technology(防务技术)》 SCIE EI CAS 2010年第1期5-9,共5页
The method of two-dimensional viscous space-time conservation element and solution element (CE/SE) can be used to calculate the gas-liquid two-phase interior flow field in pulse detonation engine (PDE). In this paper,... The method of two-dimensional viscous space-time conservation element and solution element (CE/SE) can be used to calculate the gas-liquid two-phase interior flow field in pulse detonation engine (PDE). In this paper, the evolution of the detonation wave and the distribution of its physical parameters were analyzed. The numerical results show that the change of axial velocity of gas is the same as that of detonation pressure. The larger the liquid droplet radius is, the longer the time to get stable detonation wave is. The calculated results coincide with the experimented results better. 展开更多
关键词 explosion mechanics pulse detonation engine interior ballistics CE/SE method two-phase detonation numerical calculation
下载PDF
Progress in research on cold crucible directional solidification of titanium based alloys 被引量:1
12
作者 Chen Ruirun Guo Jingjie +4 位作者 Chen Xiaoyu Dong Shulin Ding Hongsheng Su Yanqing Fu Hengzhi 《China Foundry》 SCIE CAS 2014年第4期332-338,共7页
Cold crucible directional solidification(CCDS)is a newly developed technique,which combines the advantages of the cold crucible and continuous melting.It can be applied to directionally solidify reactive,high purity a... Cold crucible directional solidification(CCDS)is a newly developed technique,which combines the advantages of the cold crucible and continuous melting.It can be applied to directionally solidify reactive,high purity and refractory materials.This paper describes the principle of CCDS and its characteristics;development of the measurement and numerical calculation of the magnetic field,flow field and temperature field in CCDS;and the CCDS of Ti based alloys.The paper also reviews original data obtained by some scholars,including the present authors,reported in separate publications in recent years.In Ti based alloys,Ti6Al4V,TiAl alloys and high Nb-containing TiAl alloys,have been directionally solidified in different cold crucibles.The crosssections of the cold crucibles include round,near rectangular and square with different sizes.Tensile testing results show that the elongation of directionally solidified Ti6Al4V can be improved to 12.7%from as cast5.4%.The strength and the elongation of the directionally solidified Ti47Al2Cr2Nb and Ti44Al6Nb1.0Cr2.0V are 650 MPa/3%and 602.5MPa/1.20%,respectively.The ingots after CCDS can be used to prepare turbine or engine blades,and are candidates to replace Ni super-alloy at temperatures of 700 to 900°C. 展开更多
关键词 cold crucible directional solidification numerical calculation titanium alloy TIAL mechanical properties
下载PDF
A Fast Approach for Predicting Aerodynamic Noise Sources of High-Speed Train Running in Tunnel 被引量:1
13
作者 Deng Qin Tian Li +4 位作者 Honglin Wang Jizhong Yang Yao Jiang Jiye Zhang Haiquan Bi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第3期1371-1386,共16页
The aerodynamic noise of high-speed trains passing through a tunnel has gradually become an important issue.Numerical approaches for predicting the aerodynamic noise sources of high-speed trains running in tunnels are... The aerodynamic noise of high-speed trains passing through a tunnel has gradually become an important issue.Numerical approaches for predicting the aerodynamic noise sources of high-speed trains running in tunnels are the key to alleviating aerodynamic noise issues.In this paper,two typical numerical methods are used to calculate the aerodynamic noise of high-speed trains.These are the static method combined with non-reflective boundary conditions and the dynamic mesh method combined with adaptive mesh.The fluctuating pressure,flow field and aerodynamic noise source are numerically simulated using the abovemethods.The results showthat the fluctuating pressure,flow field structure and noise source characteristics obtained using different methods,are basically consistent.Compared to the dynamic mesh method,the pressure,vortex size and noise source radiation intensity,obtained by the static method,are larger.The differences are in the tail car and its wake.The two calculation methods show that the spectral characteristics of the surface noise source are consistent.The maximum difference in the sound pressure level is 1.9 dBA.The static method is more efficient and more suitable for engineering applications. 展开更多
关键词 High-speed train TUNNEL numerical calculation method aerodynamic noise source flow field
下载PDF
Experiment and Calculation for Expansion Process of Ablation Plasma Jets in Liquid
14
作者 刘东尧 王育维 周彦煌 《Defence Technology(防务技术)》 SCIE EI CAS 2010年第1期1-4,共4页
The expansion process of ablation plasma jet in liquid was experimentally investigated by using high speed digital camera. The sequential pictures show that, in the initial stage of the jet, the Taylor cavity expands ... The expansion process of ablation plasma jet in liquid was experimentally investigated by using high speed digital camera. The sequential pictures show that, in the initial stage of the jet, the Taylor cavity expands in the axial and radial directions simultaneously, and then, is subjected to the constraint of chamber wall, in axial direction mainly. The maximum axial speed of the cavity's head ranges from 240m/s to 280m/s. Some strong heat conduction and mass transmission effects can be found in the surface of Taylor cavity, where the plasma cools down and condenses as solid particles while the liquid vaporizes as gas. Compared the expansion processes of the cavities among the different discharge energies and the nozzle diameters, it can be seen that the expansion speed of the cavity is directly proportional to the discharge energy and inversely to the nozzle diameter, and the effect of the discharge energy is stronger than that of the nozzle diameter. A set of equations describing the expansion process of ablation plasma jet was derived under the assumption of momentum conservation. The calculated results by use of the equations coincide with the experimented results better. 展开更多
关键词 mechanics of explosion ablation plasma jet Taylor cavity experimental study numerical calculation
下载PDF
Effects of the critical breakdown path on the ignition performance in heaterless hollow cathodes
15
作者 于博 李彦达 +1 位作者 康小录 赵青 《Plasma Science and Technology》 SCIE EI CAS CSCD 2020年第6期164-179,共16页
The critical breakdown path(CBP)has a significant impact on the breakdown voltage curve and the ignition time of heaterless hollow cathodes(HHCs).To determine the pattern of the variation in the CBP position and its i... The critical breakdown path(CBP)has a significant impact on the breakdown voltage curve and the ignition time of heaterless hollow cathodes(HHCs).To determine the pattern of the variation in the CBP position and its impact on ignition performance,a numerical model named the CBP evaluation(CBPE)was established in this paper to calculate the CBP of a HHC.The CBPE model can be used to screen various potential breakdown paths to identify those that are most likely to satisfy the Townsend breakdown conditions,which are denoted as CBPs.To verify the calculation accuracy of the CBPE model,4.5 A-level HHC ignition tests were conducted on HHCs with three different structures.By comparing the test results and the calculated results of the breakdown voltage,the calculation errors of the CBPE under three HHC conditions ranged from 1.6%to 5.8%,and the trends of the calculated results were consistent with those of the test results.The ignition test also showed the characteristics of the breakdown voltage curve and the ignition time for the three HHCs.Based on the CBPE model,an in-depth analysis was conducted on the mechanism of the patterns revealed by the tests.The main conclusions are presented as follows:(1)the CBP always shifts from the long path to the short path in the HHCs with an increasing gas flow rate;and(2)the ignition time of the HHCs depends on the position of the CBP because different CBP positions can cause different mechanisms of heat transfer from the plasma to the emitter.This study can guide the optimization of the CBP position and the corresponding ignition times of HHCs. 展开更多
关键词 breakdown path heaterless hollow cathode breakdown voltage ignition time numerical calculation
下载PDF
Tensioner Vibration and Belt Slipping Behavior Investigation for Damped Serpentine Belt Drive Systems
16
作者 王红云 上官文斌 《Journal of Beijing Institute of Technology》 EI CAS 2010年第1期25-30,共6页
A nonlinear rotational motion model for n-pulley damped serpentine belt drive systems (SBDSs) was developed.The effects of the belt deflection along the contact arc of pulleys on the belt span tensions were considered... A nonlinear rotational motion model for n-pulley damped serpentine belt drive systems (SBDSs) was developed.The effects of the belt deflection along the contact arc of pulleys on the belt span tensions were considered.The methods for calculating the tensioner arm vibration and belt slipping on pulleys were introduced.The effects of belt damping on rotational vibration of tensioner arm and belt slipping on pulleys were studied.Numerical solutions for a 3-pulley SBDS indicate that the belt slipping at the steady states should be controlled to avoid belt slipping at transient states.The slip factors tend to decrease when the belt damping increases,and the possibility of the belt slipping can be controlled through adjusting the wrap angles of pulleys and the preload of the tensioner when the design parameters of SBDS remain constant. 展开更多
关键词 serpentine belt drive system tensioner arm vibration belt slipping behavior numerical calculation
下载PDF
Influence of the Impeller/Guide Vane Clearance Ratio on the Performances of a Nuclear Reactor Coolant Pump
17
作者 Xiaorui Cheng Xiang Liu Boru Lv 《Fluid Dynamics & Materials Processing》 EI 2022年第1期93-107,共15页
An AP1000 nuclear reactor coolant pump is considered to assess the influence of the Impeller/Guide vane clearance on the performances of this type of pumps.Experiments and numerical simulations relying on an unidirect... An AP1000 nuclear reactor coolant pump is considered to assess the influence of the Impeller/Guide vane clearance on the performances of this type of pumps.Experiments and numerical simulations relying on an unidirectional fluid-solid coupling approach are used to investigate the problem(stress,strain and mode of the rotor).The results reveal the relationship existing between the hydraulic performance of the nuclear reactor coolant pump and the clearance ratio.The effect of clearance ratio on the maximum equivalent stress on the back surface of the impeller blade is greater than that on the working surface(the maximum equivalent stress on the back surface of impeller blade is about three times that on the working surface).The clearance ratio has a scarce effect on the first six natural frequencies of the rotor of the nuclear reactor coolant pump.The related vibrational modes have different waveforms. 展开更多
关键词 Nuclear reactor coolant pump clearance ratio fluid-solid coupling stress and strain numerical calculation
下载PDF
Performance Optimization of a Phosphoric Acid Fuel Cell/Absorption Refrigerator Hybrid System
18
作者 孔德盟 黄跃武 《Journal of Donghua University(English Edition)》 EI CAS 2017年第5期683-688,共6页
A hybrid system that consists of a phosphoric acid fuel cell(PAFC),an absorption refrigerator and a refrigeration-space is proposed.The four-heat-source absorption refrigerator,which is driven by the waste heat produc... A hybrid system that consists of a phosphoric acid fuel cell(PAFC),an absorption refrigerator and a refrigeration-space is proposed.The four-heat-source absorption refrigerator,which is driven by the waste heat produced from PAFC,provides cooling for a refrigeration-space.A numerical model is set up to analyze both the steady-state performance and transient performance considering the influences of the electrochemical and thermodynamic irreversibilities.Expressions of the equivalent power output and efficiency of the hybrid system are determined.Moreover,the transient behavior of cold-space temperature is performed and the time to reach a prescribed cold-space temperature is displayed.Thus,the operation regions of the current are optimized at different operating conditions.The results showthat in an appropriate current range,the overall power output and efficiencies of the hybrid system are enhanced. 展开更多
关键词 phosphoric acid fuel cell(PAFC) absorption refrigerator numerical calculation transient regime IRREVERSIBILITY
下载PDF
A CFD Study on a Biomimetic Flexible Two-body System
19
作者 Jianxin Hu Xin Huang Yuzhen Jin 《Fluid Dynamics & Materials Processing》 EI 2021年第3期597-614,共18页
By studying the characteristics of the flow field around a swimming fish,useful insights can be obtained into the superior swimming capabilities developed by nature over millions of years,in comparison to what can be ... By studying the characteristics of the flow field around a swimming fish,useful insights can be obtained into the superior swimming capabilities developed by nature over millions of years,in comparison to what can be achieved using the standard engineering principles traditionally employed in naval and ocean engineering.In the present study,the flow field related to a single joint fish model is simulated in the framework of a commercial computational fluid dynamics software(ANSYS Fluent 18.0).The principle of the anti-Kármán vortex street is analyzed and the relationship between the direction of the tail vortex and the direction of the fin swing is determined according to the vortex structures and the pressure distribution.A parametric investigation is finally conducted to analyze in particular how the Strouhal number(St)can affect the fish propulsive performance and efficiency。 展开更多
关键词 Single joint fish numerical calculation propulsion efficiency anti-Kármán vortex street
下载PDF
A Structure-Preserving Numerical Method for the Fourth-Order Geometric Evolution Equations for Planar Curves
20
作者 Eiji Miyazaki Tomoya Kemmochi +1 位作者 Tomohiro Sogabe Shao-Liang Zhang 《Communications in Mathematical Research》 CSCD 2023年第2期296-330,共35页
For fourth-order geometric evolution equations for planar curves with the dissipation of the bending energy,including the Willmore and the Helfrich flows,we consider a numerical approach.In this study,we construct a s... For fourth-order geometric evolution equations for planar curves with the dissipation of the bending energy,including the Willmore and the Helfrich flows,we consider a numerical approach.In this study,we construct a structure-preserving method based on a discrete variational derivative method.Furthermore,to prevent the vertex concentration that may lead to numerical instability,we discretely introduce Deckelnick’s tangential velocity.Here,a modification term is introduced in the process of adding tangential velocity.This modified term enables the method to reproduce the equations’properties while preventing vertex concentration.Numerical experiments demonstrate that the proposed approach captures the equations’properties with high accuracy and avoids the concentration of vertices. 展开更多
关键词 Geometric evolution equation Willmore flow Helfrich flow numerical calculation structure-preserving discrete variational derivative method tangential velocity
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部