Sand fences made of punched steel plate(PSP)have recently been applied to control wind-blown sand in desertified and Gobi areas due to their strong wind resistance and convenient in situ construction.However,few studi...Sand fences made of punched steel plate(PSP)have recently been applied to control wind-blown sand in desertified and Gobi areas due to their strong wind resistance and convenient in situ construction.However,few studies have assessed the protective effect of PSP sand fences,especially through field observations.This study analyzes the effects of double-row PSP sand fences on wind and sand resistance using field observations and a computational fluid dynamics(CFD)numerical simulation.The results of field observations showed that the average windproof efficiencies of the first-row and second-row sand fences were 79.8%and 70.8%,respectively.Moreover,the average windproof efficiencies of the numerical simulation behind the first-row and second-row sand fences were 89.8%and 81.1%,respectively.The sand-resistance efficiency of the double-row PSP sand fences was 65.4%.Sand deposition occurred close to the first-row sand fence;however,there was relatively little sand on the leeward side of the second-row sand fence.The length of sand accumulation near PSP sand fences obtained by numerical simulation was basically consistent with that through field observations,indicating that field observations combined with numerical simulation can provide insight into the complex wind-blown sand field over PSP sand fences.This study indicates that the protection efficiency of the double-row PSP sand fences is sufficient for effective control of sand hazards associated with extremely strong wind in the Gobi areas.The output of this work is expected to improve the future application of PSP sand fences.展开更多
Finite element(FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations(RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy...Finite element(FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations(RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy, of numerical integrations in solving FE numerical substructure in RTHSs. First, sparse matrix storage schemes are adopted to decrease the computational time of FE numerical substructure. In this way, the task execution time(TET) decreases such that the scale of the numerical substructure model increases. Subsequently, several commonly used explicit numerical integration algorithms, including the central difference method(CDM), the Newmark explicit method, the Chang method and the Gui-λ method, are comprehensively compared to evaluate their computational time in solving FE numerical substructure. CDM is better than the other explicit integration algorithms when the damping matrix is diagonal, while the Gui-λ(λ = 4) method is advantageous when the damping matrix is non-diagonal. Finally, the effect of time delay on the computational accuracy of RTHSs is investigated by simulating structure-foundation systems. Simulation results show that the influences of time delay on the displacement response become obvious with the mass ratio increasing, and delay compensation methods may reduce the relative error of the displacement peak value to less than 5% even under the large time-step and large time delay.展开更多
Among the proposed techniques for delivering drugs to specific sites within the human body, magnetic targeting drug delivery surpasses due to its non-invasive character and its high targeting efficiency. Although ther...Among the proposed techniques for delivering drugs to specific sites within the human body, magnetic targeting drug delivery surpasses due to its non-invasive character and its high targeting efficiency. Although there have been some analyses theoretically for magnetic drug targeting, very few researchers have addressed the hydrodynamic models of magnetic fluids in the blood vessel of human body. This paper presents a mathematical model to describe the hydrodynamics of ferrofluids as drug carriers flowing in a blood vessel under the applied magnetic field. A 3D flow field of magnetic particles in a blood vessel model is numerically simulated in order to further understand clinical application of magnetic targeting drug delivery. Simulation results show that magnetic nanoparticles can be enriched in a target region depending on the applied magnetic field intensity. Magnetic resonance imaging confirms the enrichment of ferrofluids in a desired body tissue of Sprague-Dawley rats. The simulation results coincide with those animal experiments. Results of the analysis provide the important information and can suggest strategies for improving delivery in favor of the clinical application.展开更多
A computational fluid dynamics(CFD)numerical simulation and field experiment were used to investigate optimal operating parameters of high-pressure jet grouting equipment and clarify the boundary law of the injection ...A computational fluid dynamics(CFD)numerical simulation and field experiment were used to investigate optimal operating parameters of high-pressure jet grouting equipment and clarify the boundary law of the injection area in the remediation process.The response surface optimization design results show that the optimal injection pressure is 30 MPa,rotation speed is 23 r/min,commission speed is 30 cm/min,and the optimal injection diameter is 147.3 cm.Based on the CFD numerical simulation,the ratio of the injection core,turbulent zone,and seepage zone is approximately 1∶4∶2.The distribution law of jet core,turbulence zone and seepage zone at different cross-sections under 30 MPa operating conditions is as follows:The jet core radius is approximately 100 mm,the turbulence zone is mainly distributed at 100 to 500 mm,the seepage zone is mainly distributed at 500 to 700 mm,the seepage zone could be completed within 2 h,and the proportion of the three boundary zones in the injection zone is similar to that of the numerical simulation.This study provides theoretical parameters and practical reference for the remediation of deep pollution via in-situ chemical oxidation in the Loess Plateau soil environment.展开更多
The influence of a vertical jet located at the distributor in a cylindrical fluidized bed on the flow behavior of gas and particles was predicted using a filtered two-fluid model proposed by Sundaresan and coworkers. ...The influence of a vertical jet located at the distributor in a cylindrical fluidized bed on the flow behavior of gas and particles was predicted using a filtered two-fluid model proposed by Sundaresan and coworkers. The distributions of volume fraction and the velocity of particles along the lateral direction were investigated for different jet velocities by analyzing the simulated results. The vertical jet penetration lengths at the different gas jet velocities have been obtained and compared with predictions derived from empirical correlations; the predicted air jet penetration length is discussed. Agreement between the numerical simulations and experimental results has been achieved.展开更多
In view of the supercavitation effect, a novel device named the rotational supercavitating evaporator (RSCE) has been designed for the desalination. In order to improve the blade shape of the rotational cavitator in t...In view of the supercavitation effect, a novel device named the rotational supercavitating evaporator (RSCE) has been designed for the desalination. In order to improve the blade shape of the rotational cavitator in the RSCE for the performance optimization, the blade shapes of different sizes are designed by utilizing the improved calculation method for the blade shape and the validated empirical formulae based on previous two-dimensional numerical simulations, from which the optimized blade shape with the wedge angle of 45° and the design speed of 5 000 r/min is selected. The estimation method for the desalination performance parameters is developed to validate the feasibility of the utilization of the results obtained by the two-dimensional numerical simulations in the design of the three-dimensional blade shape. Three-dimensional numerical simulations are then conducted for the supercavitating flows around the rotational cavitator with the optimized blade shape at different rotational speeds to obtain the morphological characteristics of the rotational natural supercavitation. The results show that the profile of the supercavity tail is concaved toward the inside of the supercavity due to the re-entrant jet. The empirical formulae for estimating the supercavity size with consideration of the rotation are obtained by fitting the data, with the exponents different from those obtained by the previous two-dimensional numerical simulations. The influences of the rotation on the morphological characteristics are analyzed from the perspectives of the tip and hub vortices and the interaction between the supercavity tail and the blade. Further numerical simulation of the supercavitating flow around the rotational cavitator made up by the blades with exit edge of uniform thickness illustrate that the morphological characteristics are also affected by the blade shape.展开更多
To investigate the effects of the caudal fin deformation on the hydrodynamic performance of the self-propelled thunniform swimming,we perform fluid-body interaction simulations for a tuna-like swimmer with thunniform ...To investigate the effects of the caudal fin deformation on the hydrodynamic performance of the self-propelled thunniform swimming,we perform fluid-body interaction simulations for a tuna-like swimmer with thunniform kinematics.The 3-D vortices are visualized to reveal the role of the leading-edge vortex(LEV)in the thrust generation.By comparing the swimming velocity of the swimmer with different caudal fin flexure amplitudes fa,it is shown that the acceleration in the starting stage of the swimmer increases with the increase of fa,but its cruising velocity decreases.The results indicate that the caudal fin deformation is beneficial to the fast start but not to the fast cruising of the swimmer.During the entire swimming process,the undulation amplitudes of the lateral velocity and the yawing angular velocity decrease as fa increases.It is found that the formation of an attached LEV on the caudal fin is responsible for generating the low-pressure region on the surface of the caudal fin,which contributes to the thrust.Furthermore,the caudal fin deformation can delay the LEV shedding from the caudal fin,extending the duration of the low pressure on the caudal fin,which will cause the caudal fin to generate a drag-type force over a time period in one swimming cycle and reduce the cruising speed of the swimmer.展开更多
基金This research was funded by the Fellowship of the China Postdoctoral Science Foundation(2021M703466)the Basic Research Innovation Group Project of Gansu Province,China(21JR7RA347)the Natural Science Foundation of Gansu Province,China(20JR10RA231).
文摘Sand fences made of punched steel plate(PSP)have recently been applied to control wind-blown sand in desertified and Gobi areas due to their strong wind resistance and convenient in situ construction.However,few studies have assessed the protective effect of PSP sand fences,especially through field observations.This study analyzes the effects of double-row PSP sand fences on wind and sand resistance using field observations and a computational fluid dynamics(CFD)numerical simulation.The results of field observations showed that the average windproof efficiencies of the first-row and second-row sand fences were 79.8%and 70.8%,respectively.Moreover,the average windproof efficiencies of the numerical simulation behind the first-row and second-row sand fences were 89.8%and 81.1%,respectively.The sand-resistance efficiency of the double-row PSP sand fences was 65.4%.Sand deposition occurred close to the first-row sand fence;however,there was relatively little sand on the leeward side of the second-row sand fence.The length of sand accumulation near PSP sand fences obtained by numerical simulation was basically consistent with that through field observations,indicating that field observations combined with numerical simulation can provide insight into the complex wind-blown sand field over PSP sand fences.This study indicates that the protection efficiency of the double-row PSP sand fences is sufficient for effective control of sand hazards associated with extremely strong wind in the Gobi areas.The output of this work is expected to improve the future application of PSP sand fences.
基金National Natural Science Foundation of China under Grant Nos.51639006 and 51725901
文摘Finite element(FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations(RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy, of numerical integrations in solving FE numerical substructure in RTHSs. First, sparse matrix storage schemes are adopted to decrease the computational time of FE numerical substructure. In this way, the task execution time(TET) decreases such that the scale of the numerical substructure model increases. Subsequently, several commonly used explicit numerical integration algorithms, including the central difference method(CDM), the Newmark explicit method, the Chang method and the Gui-λ method, are comprehensively compared to evaluate their computational time in solving FE numerical substructure. CDM is better than the other explicit integration algorithms when the damping matrix is diagonal, while the Gui-λ(λ = 4) method is advantageous when the damping matrix is non-diagonal. Finally, the effect of time delay on the computational accuracy of RTHSs is investigated by simulating structure-foundation systems. Simulation results show that the influences of time delay on the displacement response become obvious with the mass ratio increasing, and delay compensation methods may reduce the relative error of the displacement peak value to less than 5% even under the large time-step and large time delay.
基金supported by National Natural Science Foundation of China (Grant No. 50875169)National Basic Research Program of China (973 Program, Grant No. 2007CB936004).
文摘Among the proposed techniques for delivering drugs to specific sites within the human body, magnetic targeting drug delivery surpasses due to its non-invasive character and its high targeting efficiency. Although there have been some analyses theoretically for magnetic drug targeting, very few researchers have addressed the hydrodynamic models of magnetic fluids in the blood vessel of human body. This paper presents a mathematical model to describe the hydrodynamics of ferrofluids as drug carriers flowing in a blood vessel under the applied magnetic field. A 3D flow field of magnetic particles in a blood vessel model is numerically simulated in order to further understand clinical application of magnetic targeting drug delivery. Simulation results show that magnetic nanoparticles can be enriched in a target region depending on the applied magnetic field intensity. Magnetic resonance imaging confirms the enrichment of ferrofluids in a desired body tissue of Sprague-Dawley rats. The simulation results coincide with those animal experiments. Results of the analysis provide the important information and can suggest strategies for improving delivery in favor of the clinical application.
基金The National Natural Science Foundation of China(No.41967043,52160003)the Natural Science Foundation of Gansu Province(No.20JR5RA461)+1 种基金the Key Project of China Railway Southwest Research Institute Co.,Ltd.(No.2018-KJ003-Z003-XB)the Industrial Support Program of the Higher Education of Gansu Province(No.2020C-40).
文摘A computational fluid dynamics(CFD)numerical simulation and field experiment were used to investigate optimal operating parameters of high-pressure jet grouting equipment and clarify the boundary law of the injection area in the remediation process.The response surface optimization design results show that the optimal injection pressure is 30 MPa,rotation speed is 23 r/min,commission speed is 30 cm/min,and the optimal injection diameter is 147.3 cm.Based on the CFD numerical simulation,the ratio of the injection core,turbulent zone,and seepage zone is approximately 1∶4∶2.The distribution law of jet core,turbulence zone and seepage zone at different cross-sections under 30 MPa operating conditions is as follows:The jet core radius is approximately 100 mm,the turbulence zone is mainly distributed at 100 to 500 mm,the seepage zone is mainly distributed at 500 to 700 mm,the seepage zone could be completed within 2 h,and the proportion of the three boundary zones in the injection zone is similar to that of the numerical simulation.This study provides theoretical parameters and practical reference for the remediation of deep pollution via in-situ chemical oxidation in the Loess Plateau soil environment.
基金This work was supported by the Natural Science Foundation of China through Grant No. 21676051, New Century Excellent Talents in University (NCET-12-0703). One of the authors (Shuyan Wang) thanks the China Scholarship Council (CSC) for providing financial support to the Sundaresan's group of Princeton University.
文摘The influence of a vertical jet located at the distributor in a cylindrical fluidized bed on the flow behavior of gas and particles was predicted using a filtered two-fluid model proposed by Sundaresan and coworkers. The distributions of volume fraction and the velocity of particles along the lateral direction were investigated for different jet velocities by analyzing the simulated results. The vertical jet penetration lengths at the different gas jet velocities have been obtained and compared with predictions derived from empirical correlations; the predicted air jet penetration length is discussed. Agreement between the numerical simulations and experimental results has been achieved.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51806051,51706050,51276046 and 51576051).
文摘In view of the supercavitation effect, a novel device named the rotational supercavitating evaporator (RSCE) has been designed for the desalination. In order to improve the blade shape of the rotational cavitator in the RSCE for the performance optimization, the blade shapes of different sizes are designed by utilizing the improved calculation method for the blade shape and the validated empirical formulae based on previous two-dimensional numerical simulations, from which the optimized blade shape with the wedge angle of 45° and the design speed of 5 000 r/min is selected. The estimation method for the desalination performance parameters is developed to validate the feasibility of the utilization of the results obtained by the two-dimensional numerical simulations in the design of the three-dimensional blade shape. Three-dimensional numerical simulations are then conducted for the supercavitating flows around the rotational cavitator with the optimized blade shape at different rotational speeds to obtain the morphological characteristics of the rotational natural supercavitation. The results show that the profile of the supercavity tail is concaved toward the inside of the supercavity due to the re-entrant jet. The empirical formulae for estimating the supercavity size with consideration of the rotation are obtained by fitting the data, with the exponents different from those obtained by the previous two-dimensional numerical simulations. The influences of the rotation on the morphological characteristics are analyzed from the perspectives of the tip and hub vortices and the interaction between the supercavity tail and the blade. Further numerical simulation of the supercavitating flow around the rotational cavitator made up by the blades with exit edge of uniform thickness illustrate that the morphological characteristics are also affected by the blade shape.
基金Project supported by the National Natural Science Foundation of China(Grant No.51479039).
文摘To investigate the effects of the caudal fin deformation on the hydrodynamic performance of the self-propelled thunniform swimming,we perform fluid-body interaction simulations for a tuna-like swimmer with thunniform kinematics.The 3-D vortices are visualized to reveal the role of the leading-edge vortex(LEV)in the thrust generation.By comparing the swimming velocity of the swimmer with different caudal fin flexure amplitudes fa,it is shown that the acceleration in the starting stage of the swimmer increases with the increase of fa,but its cruising velocity decreases.The results indicate that the caudal fin deformation is beneficial to the fast start but not to the fast cruising of the swimmer.During the entire swimming process,the undulation amplitudes of the lateral velocity and the yawing angular velocity decrease as fa increases.It is found that the formation of an attached LEV on the caudal fin is responsible for generating the low-pressure region on the surface of the caudal fin,which contributes to the thrust.Furthermore,the caudal fin deformation can delay the LEV shedding from the caudal fin,extending the duration of the low pressure on the caudal fin,which will cause the caudal fin to generate a drag-type force over a time period in one swimming cycle and reduce the cruising speed of the swimmer.