期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Bayesian zero-failure reliability modeling and assessment method for multiple numerical control(NC) machine tools 被引量:2
1
作者 阚英男 杨兆军 +3 位作者 李国发 何佳龙 王彦鹍 李洪洲 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2858-2866,共9页
A new problem that classical statistical methods are incapable of solving is reliability modeling and assessment when multiple numerical control machine tools(NCMTs) reveal zero failures after a reliability test. Thus... A new problem that classical statistical methods are incapable of solving is reliability modeling and assessment when multiple numerical control machine tools(NCMTs) reveal zero failures after a reliability test. Thus, the zero-failure data form and corresponding Bayesian model are developed to solve the zero-failure problem of NCMTs, for which no previous suitable statistical model has been developed. An expert-judgment process that incorporates prior information is presented to solve the difficulty in obtaining reliable prior distributions of Weibull parameters. The equations for the posterior distribution of the parameter vector and the Markov chain Monte Carlo(MCMC) algorithm are derived to solve the difficulty of calculating high-dimensional integration and to obtain parameter estimators. The proposed method is applied to a real case; a corresponding programming code and trick are developed to implement an MCMC simulation in Win BUGS, and a mean time between failures(MTBF) of 1057.9 h is obtained. Given its ability to combine expert judgment, prior information, and data, the proposed reliability modeling and assessment method under the zero failure of NCMTs is validated. 展开更多
关键词 Weibull distribution reliability modeling BAYES zero failure numerical control(NC) machine tools Markov chain Monte Carlo(MCMC) algorithm
下载PDF
Reliability Analysis of Electrical System of Computer Numerical Control Machine Tool Based on Bayesian Networks 被引量:2
2
作者 黄土地 晏晶 +2 位作者 姜梅 彭卫文 黄洪钟 《Journal of Shanghai Jiaotong university(Science)》 EI 2016年第5期635-640,共6页
The core of computer numerical control(CNC) machine tool is the electrical system which controls and coordinates every part of CNC machine tool to complete processing tasks, so it is of great significance to strengthe... The core of computer numerical control(CNC) machine tool is the electrical system which controls and coordinates every part of CNC machine tool to complete processing tasks, so it is of great significance to strengthen the reliability of the electrical system. However, the electrical system is very complex due to many uncertain factors and dynamic stochastic characteristics when failure occurs. Therefore, the traditional fault tree analysis(FTA) method is not applicable. Bayesian network(BN) not only has a unique advantage to analyze nodes with multiply states in reliability analysis for complex systems, but also can solve the state explosion problem properly caused by Markov model when dealing with dynamic fault tree(DFT). In addition, the forward causal reasoning of BN can get the conditional probability distribution of the system under considering the uncertainty;the backward diagnosis reasoning of BN can recognize the weak links in system, so it is valuable for improving the system reliability. 展开更多
关键词 dynamic fault tree(DFT) Bayesian network(BN) RELIABILITY computer numerical control(CNC) machine tool electrical system
原文传递
Thermal error modeling based on BiLSTM deep learning for CNC machine tool 被引量:2
3
作者 Pu-Ling Liu Zheng-Chun Du +3 位作者 Hui-Min Li Ming Deng Xiao-Bing Feng Jian-Guo Yang 《Advances in Manufacturing》 SCIE EI CAS CSCD 2021年第2期235-249,共15页
The machining accuracy of computer numerical control machine tools has always been a focus of the manufacturing industry.Among all errors,thermal error affects the machining accuracy considerably.Because of the signif... The machining accuracy of computer numerical control machine tools has always been a focus of the manufacturing industry.Among all errors,thermal error affects the machining accuracy considerably.Because of the significant impact of Industry 4.0 on machine tools,existing thermal error modeling methods have encountered unprecedented challenges in terms of model complexity and capability of dealing with a large number of time series data.A thermal error modeling method is proposed based on bidirectional long short-term memory(BiLSTM)deep learning,which has good learning ability and a strong capability to handle a large group of dynamic data.A four-layer model framework that includes BiLSTM,a feedforward neural network,and the max pooling is constructed.An elaborately designed algorithm is proposed for better and faster model training.The window length of the input sequence is selected based on the phase space reconstruction of the time series.The model prediction accuracy and model robustness were verified experimentally by three validation tests in which thermal errors predicted by the proposed model were compensated for real workpiece cutting.The average depth variation of the workpiece was reduced from approximately 50μm to less than 2μm after compensation.The reduction in maximum depth variation was more than 85%.The proposed model was proved to be feasible and effective for improving machining accuracy significantly. 展开更多
关键词 Thermal error Error modeling Bidirectional long short-term memory(BiLSTM) Phase space reconstruction Computer numerical control(CNC)machine tool
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部