期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A simple method of depressing numerical dissipation effects during wave simulation within the Euler model 被引量:1
1
作者 Zhe Hu Xiaoying Zhang +3 位作者 Weicheng Cui Fang Wang Xiaowen Li Yan Li 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2020年第1期141-156,共16页
Numerical wave tanks are widely-acknowledged tools in studying waves and wave-structure interactions. They can generate waves under realistic scales and offers more information on the fluid field. However, most numeri... Numerical wave tanks are widely-acknowledged tools in studying waves and wave-structure interactions. They can generate waves under realistic scales and offers more information on the fluid field. However, most numerical wave tanks suffer from issues known as the numerical dissipation and numerical dispersion. The former causes wave energy to be slowly dissipated and the latter shifts wave frequencies during wave propagation. This paper proposes a simple method of depressing numerical dissipation effects on the basis of solving Euler equations using the finite difference method(FDM). The wave propagation solutions are solved analytically taking into account the influence of the damping terms. The main idea of the method is to append a source term to the momentum equation, whose strength is determined by how strong the numerical damping effect is. The method is verified by successfully depressing numerical effects during the simulation of regular linear waves, Stokes waves and irregular waves. By applying the method, wave energy is able to be close to its initial value after long distance of travel. 展开更多
关键词 numerical dissipation numerical wave tank wave simulation numerical damping reduction finite difference method
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部