期刊文献+
共找到492,710篇文章
< 1 2 250 >
每页显示 20 50 100
A methodology for damage evaluation of underground tunnels subjected to static loading using numerical modeling 被引量:1
1
作者 Shahriyar Heidarzadeh Ali Saeidi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期1993-2005,共13页
We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensiti... We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensities.To account for these variations,we utilized a Monte Carlo Simulation(MCS)technique coupled with the finite difference code FLAC^(3D),to conduct two thousand seven hundred numerical simulations of a horseshoe tunnel located within a rock mass with different geological strength index system(GSIs)and subjected to different states of static loading.To quantify the severity of damage within the rock mass,we selected one stress-based(brittle shear ratio(BSR))and one strain-based failure criterion(plastic damage index(PDI)).Based on these criteria,we then developed fragility curves.Additionally,we used mathematical approximation techniques to produce vulnerability functions that relate the probabilities of various damage states to loading intensities for different quality classes of blocky rock mass.The results indicated that the fragility curves we obtained could accurately depict the evolution of the inner and outer shell damage around the tunnel.Therefore,we have provided engineers with a tool that can predict levels of damages associated with different failure mechanisms based on variations in rock mass quality and in situ stress state.Our method is a numerically developed,multi-variate approach that can aid engineers in making informed decisions about the robustness of underground tunnels. 展开更多
关键词 Fragility curves Underground tunnels Vulnerability functions Brittle damage FLAC3D numerical modeling
下载PDF
High-Precision Flow Numerical Simulation and Productivity Evaluation of Shale Oil Considering Stress Sensitivity
2
作者 Mingjing Lu Qin Qian +3 位作者 Anhai Zhong Feng Yang Wenjun He Min Li 《Fluid Dynamics & Materials Processing》 EI 2024年第10期2281-2300,共20页
Continental shale oil reservoirs,characterized by numerous bedding planes and micro-nano scale pores,feature significantly higher stress sensitivity compared to other types of reservoirs.However,research on suitable s... Continental shale oil reservoirs,characterized by numerous bedding planes and micro-nano scale pores,feature significantly higher stress sensitivity compared to other types of reservoirs.However,research on suitable stress sensitivity characterization models is still limited.In this study,three commonly used stress sensitivity models for shale oil reservoirs were considered,and experiments on representative core samples were conducted.By fitting and comparing the data,the“exponential model”was identified as a characterization model that accurately represents stress sensitivity in continental shale oil reservoirs.To validate the accuracy of the model,a two-phase seepage mathematical model for shale oil reservoirs coupled with the exponential model was introduced.The model was discretely solved using the finite volume method,and its accuracy was verified through the commercial simulator CMG.The study evaluated the productivity of a typical horizontal well under different engineering,geological,and fracture conditions.The results indicate that considering stress sensitivity leads to a 13.57%reduction in production for the same matrix permeability.Additionally,as the fracture half-length and the number of fractures increase,and the bottomhole flowing pressure decreases,the reservoir stress sensitivity becomes higher. 展开更多
关键词 Shale oil horizontal wells Embedded Discrete Fracture Model(EDFM) stress sensitivity numerical simulation sensitivity analysis
下载PDF
Numerical simulation of drop weight impact sensitivity evaluation criteria for pressed PBXs 被引量:1
3
作者 Hong-zheng Duan Yan-qing Wu +1 位作者 Kun Yang Feng-lei Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第1期76-90,共15页
A thorough understanding of drop-weight impacted responses for polymer-bonded explosives(PBXs)is significant to evaluate their impact sensitivity.The characteristics of the drop-weight impacted pressed PBXs including ... A thorough understanding of drop-weight impacted responses for polymer-bonded explosives(PBXs)is significant to evaluate their impact sensitivity.The characteristics of the drop-weight impacted pressed PBXs including deforming,fracturing,forming a local high-temperature region and igniting,were simulated using a coupled mechanical-thermo-chemical model integrating micro-defects evolution.A novel evaluation method for impact sensitivity is established using the relation between the input kinetic energy and the output energy due to deformation,crushing energy,local hot spot energy and ignition.The effects of impact velocity on sensitivity were analyzed and the critical local ignition impact velocity is determined as 4.0-4.5 m/s.The simulated results show that shear-crack friction heating is the dominant ignition mechanism.The region along the boundary of PBXs sample is the most hazardous regions where ignition first occur.The propagation of stress wave in PBXs causes shear-crack hotspot and bulk temperature exhibiting an approximate 45°direction evolution path,which is the main reason that dominated damage-ignition region transits from the boundary to the central of sample. 展开更多
关键词 Polymer-bonded explosives(PBXs) Drop weight impact numerical simulation Sensitivity evaluation criterion Hotspot mechanism
下载PDF
Zoning Evaluation of Hourly Precipitation in High-resolution Regional Numerical Models over Hainan Island
4
作者 冯箫 吴俞 +1 位作者 杨薇 李勋 《Journal of Tropical Meteorology》 SCIE 2023年第4期460-472,共13页
This study assesses the performance of three high-resolution regional numerical models in predicting hourly rainfall over Hainan Island from April to October for the years from 2020 to 2022.The rainfall amount,frequen... This study assesses the performance of three high-resolution regional numerical models in predicting hourly rainfall over Hainan Island from April to October for the years from 2020 to 2022.The rainfall amount,frequency,intensity,duration,and diurnal cycle are examined through zoning evaluation.The results show that the China Meteor-ological Administration Guangdong Rapid Update Assimilation Numerical Forecast System(CMA-GD)tends to forecast a higher occurrence of light precipitation.It underestimates the late afternoon precipitation and the occurrence of short-duration events.The China Meteorological Administration Shanghai Numerical Forecast Model System(CMA-SH9)reproduces excessive precipitation at a higher frequency and intensity throughout the island.It overestimates rainfall during the late afternoon and midnight periods.The simulated most frequent peak times of rainfall in CMA-SH9 are 0-1 hour deviations from the observed data.The China Meteorological Administration Mesoscale Weather Numerical Forecasting System(CMA-MESO)displays a similar pattern to rainfall observations but fails to replicate reasonable structure and diurnal variation of frequency-intensity.It underestimates the occurrence of long-duration events and overestimates related rainfall amounts from midnight to early morning.Notably,significant discrepancies are observed in the predictions of the three models for areas with complex terrain,such as the central,southeastern,and southwestern regions of Hainan Island. 展开更多
关键词 Hainan Island hourly precipitation regional numerical model zoning evaluation
下载PDF
Spectral purification improves monitoring accuracy of the comprehensive growth evaluation index for film-mulched winter wheat 被引量:1
5
作者 Zhikai Cheng Xiaobo Gu +5 位作者 Yadan Du Zhihui Zhou Wenlong Li Xiaobo Zheng Wenjing Cai Tian Chang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1523-1540,共18页
In order to further improve the utility of unmanned aerial vehicle(UAV)remote-sensing for quickly and accurately monitoring the growth of winter wheat under film mulching, this study examined the treatments of ridge m... In order to further improve the utility of unmanned aerial vehicle(UAV)remote-sensing for quickly and accurately monitoring the growth of winter wheat under film mulching, this study examined the treatments of ridge mulching,ridge–furrow full mulching, and flat cropping full mulching in winter wheat.Based on the fuzzy comprehensive evaluation (FCE) method, four agronomic parameters (leaf area index, above-ground biomass, plant height, and leaf chlorophyll content) were used to calculate the comprehensive growth evaluation index (CGEI) of the winter wheat, and 14 visible and near-infrared spectral indices were calculated using spectral purification technology to process the remote-sensing image data of winter wheat obtained by multispectral UAV.Four machine learning algorithms, partial least squares, support vector machines, random forests, and artificial neural network networks(ANN), were used to build the winter wheat growth monitoring model under film mulching, and accuracy evaluation and mapping of the spatial and temporal distribution of winter wheat growth status were carried out.The results showed that the CGEI of winter wheat under film mulching constructed using the FCE method could objectively and comprehensively evaluate the crop growth status.The accuracy of remote-sensing inversion of the CGEI based on the ANN model was higher than for the individual agronomic parameters, with a coefficient of determination of 0.75,a root mean square error of 8.40, and a mean absolute value error of 6.53.Spectral purification could eliminate the interference of background effects caused by mulching and soil, effectively improving the accuracy of the remotesensing inversion of winter wheat under film mulching, with the best inversion effect achieved on the ridge–furrow full mulching area after spectral purification.The results of this study provide a theoretical reference for the use of UAV remote-sensing to monitor the growth status of winter wheat with film mulching. 展开更多
关键词 mulched winter wheat machine learning fuzzy comprehensive evaluation comprehensive growth evaluation index unmanned aerial vehicle
下载PDF
Recent progresses in the development of tubular segmented-in-series solid oxide fuel cells:Experimental and numerical study 被引量:2
6
作者 Shuo Han Tao Wei +6 位作者 Sijia Wang Yanlong Zhu Xingtong Guo Liang He Xiongzhuang Li Qing Huang Daifen Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期427-442,共16页
Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs s... Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs suffer from having a higher volume,current leakage,complex connections,and difficulty in gas sealing.To solve these problems,Rolls-Royce has fabricated a simple design by stacking cells in series on an insulating porous support,resulting in the tubular segmented-in-series solid oxide fuel cells(SIS-SOFCs),which achieved higher output voltage.This work systematically reviews recent advances in the structures,preparation methods,perform-ances,and stability of tubular SIS-SOFCs in experimental and numerical studies.Finally,the challenges and future development of tubular SIS-SOFCs are also discussed.The findings of this work can help guide the direction and inspire innovation of future development in this field. 展开更多
关键词 solid oxide fuel cell SEGMENTED-IN-SERIES TUBULAR experimental study numerical study
下载PDF
Landslide hazard susceptibility evaluation based on SBAS-InSAR technology and SSA-BP neural network algorithm:A case study of Baihetan Reservoir Area 被引量:1
7
作者 GUO Junqi XI Wenfei +4 位作者 YANG Zhiquan SHI Zhengtao HUANG Guangcai YANG Zhengrong YANG Dongqing 《Journal of Mountain Science》 SCIE CSCD 2024年第3期952-972,共21页
Landslide hazard susceptibility evaluation takes on critical significance in early warning and disaster prevention and reduction.In order to solve the problems of poor effectiveness of landslide data and complex calcu... Landslide hazard susceptibility evaluation takes on critical significance in early warning and disaster prevention and reduction.In order to solve the problems of poor effectiveness of landslide data and complex calculation of weights for multiple evaluation factors in the existing landslide susceptibility evaluation models,in this study,a method of landslide hazard susceptibility evaluation is proposed by combining SBAS-InSAR(Small Baseline Subsets-Interferometric Synthetic Aperture Radar)and SSA-BP(Sparrow Search Algorithm-Back Propagation)neural network algorithm.The SBAS-InSAR technology is adopted to identify potential landslide hazards in the study area,update the cataloging data of landslide hazards,and 11 evaluation factors are chosen for constructing the SSA-BP model for training and validation.Baihetan Reservoir area is selected as a case study for validation.As indicated by the results,the application of SBAS-InSAR technology,combined with both ascending and descending orbit data,effectively addresses the incomplete identification of landslide hazards caused by geometric distortion of single orbit SAR data(e.g.,shadow,overlay,and perspective contraction)in deep canyon areas,thereby enabling the acquisition of up-to-date landslide hazard data.Moreover,in comparison to the conventional BP(Back Propagation)algorithm,the accuracy of the model constructed by the SSA-BP algorithm exhibits a significant increase,with mean squared error and mean absolute error reduced by 0.0142 and 0.0607,respectively.Additionally,during the process of susceptibility evaluation,the SSA-BP model effectively circumvents the issue of considerable manual interventions in calculating the weight of evaluation factors.The area under the curve of this model reaches 0.909,surpassing BP(0.835),random forest(0.792),and the information value method(0.699).The risk of landslide occurrence in the Baihetan Reservoir area is positively correlated with slope,surface temperature,and deformation rate,while it is negatively correlated with fault distance and normalized difference vegetation index.Geological lithology exerts minimal influence on the occurrence of landslides,with the risk being low in forest land and high in grassland.The method proposed in this study provides a useful reference for disaster prevention and mitigation departments to perform landslide hazard susceptibility evaluations in deep canyon areas under complex geological conditions. 展开更多
关键词 Baihetan SBAS-InSAR SSA-BP Landslide hazard susceptibility evaluation
下载PDF
Comparative evaluation of commercial Douchi by different molds:biogenic amines,non-volatile and volatile compounds 被引量:1
8
作者 Aijun Li Gang Yang +4 位作者 Zhirong Wang Shenglan Liao Muying Du Jun Song Jianquan Kan 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期434-443,共10页
To provide new insights into the development and utilization of Douchi artificial starters,three common strains(Aspergillus oryzae,Mucor racemosus,and Rhizopus oligosporus)were used to study their influence on the fer... To provide new insights into the development and utilization of Douchi artificial starters,three common strains(Aspergillus oryzae,Mucor racemosus,and Rhizopus oligosporus)were used to study their influence on the fermentation of Douchi.The results showed that the biogenic amine contents of the three types of Douchi were all within the safe range and far lower than those of traditional fermented Douchi.Aspergillus-type Douchi produced more free amino acids than the other two types of Douchi,and its umami taste was more prominent in sensory evaluation(P<0.01),while Mucor-type and Rhizopus-type Douchi produced more esters and pyrazines,making the aroma,sauce,and Douchi flavor more abundant.According to the Pearson and PLS analyses results,sweetness was significantly negatively correlated with phenylalanine,cysteine,and acetic acid(P<0.05),bitterness was significantly negatively correlated with malic acid(P<0.05),the sour taste was significantly positively correlated with citric acid and most free amino acids(P<0.05),while astringency was significantly negatively correlated with glucose(P<0.001).Thirteen volatile compounds such as furfuryl alcohol,phenethyl alcohol,and benzaldehyde caused the flavor difference of three types of Douchi.This study provides theoretical basis for the selection of starting strains for commercial Douchi production. 展开更多
关键词 DOUCHI Starting strains Non-volatile compounds Volatile compounds Sensory evaluation
下载PDF
Elastic-viscoplastic behaviors of polymer-blend geocell sheets:Numerical and experimental investigations 被引量:1
9
作者 Yang Zhao Jianbin Chen +7 位作者 Zheng Lu Jie Liu Abdollah Tabaroei Chuxuan Tang Yong Wang Lipeng Wu Bo Wang Hailin Yao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4261-4271,共11页
Polymer-blend geocell sheets(PBGS)have been developed as substitute materials for manufacturing geocells.Various attempts have been made to test and predict the behaviors of commonly used geogrids,geotextiles,geomembr... Polymer-blend geocell sheets(PBGS)have been developed as substitute materials for manufacturing geocells.Various attempts have been made to test and predict the behaviors of commonly used geogrids,geotextiles,geomembranes,and geocells.However,the elastic-viscoplastic behaviors of novel-developed geocell sheets are still poorly understood.Therefore,this paper investigates the elastic-viscoplastic behaviors of PBGS to gain a comprehensive understanding of their mechanical properties.Furthermore,the tensile load-strain history under various loading conditions is simulated by numerical calculation for widespread utilization.To achieve this goal,monotonic loading tests,short-term creep and stress relaxation tests,and multi-load-path tests(also known as arbitrary loading history tests)are performed using a universal testing machine.The results are simulated using the nonlinear three-component(NLTC)model,which consists of three nonlinear components,i.e.a hypo-elastic component,a nonlinear inviscid component,and a nonlinear viscid component.The experimental and numerical results demonstrate that PBGS exhibit significant elastic-viscoplastic behavior that can be accurately predicted by the NLTC model.Moreover,the tensile strain rates significantly influence the tensile load,with higher strain rates resulting in increased tensile loads and more linear load-strain curves.Also,parametric analysis of the rheological characteristics reveals that the initial tensile strain rates have negligible impact on the results.The rate-sensitivity coefficient of PBGS is approximately 0.163,which falls within the typical range observed in most geosynthetics. 展开更多
关键词 Polymer-blend geocell sheets Geosynthetics Elastic-viscoplastic behavior numerical simulations Tensile load-strain response
下载PDF
Identification and evaluation of shale oil micromigration and its petroleum geological significance 被引量:2
10
作者 HU Tao JIANG Fujie +10 位作者 PANG Xiongqi LIU Yuan WU Guanyun ZHOU Kuo XIAO Huiyi JIANG Zhenxue LI Maowen JIANG Shu HUANG Liliang CHEN Dongxia MENG Qingyang 《Petroleum Exploration and Development》 SCIE 2024年第1期127-140,共14页
Taking the Lower Permian Fengcheng Formation shale in Mahu Sag of Junggar Basin,NW China,as an example,core observation,test analysis,geological analysis and numerical simulation were applied to identify the shale oil... Taking the Lower Permian Fengcheng Formation shale in Mahu Sag of Junggar Basin,NW China,as an example,core observation,test analysis,geological analysis and numerical simulation were applied to identify the shale oil micro-migration phenomenon.The hydrocarbon micro-migration in shale oil was quantitatively evaluated and verified by a self-created hydrocarbon expulsion potential method,and the petroleum geological significance of shale oil micro-migration evaluation was determined.Results show that significant micro-migration can be recognized between the organic-rich lamina and organic-poor lamina.The organic-rich lamina has strong hydrocarbon generation ability.The heavy components of hydrocarbon preferentially retained by kerogen swelling or adsorption,while the light components of hydrocarbon were migrated and accumulated to the interbedded felsic or carbonate organic-poor laminae as free oil.About 69% of the Fengcheng Formation shale samples in Well MY1 exhibit hydrocarbon charging phenomenon,while 31% of those exhibit hydrocarbon expulsion phenomenon.The reliability of the micro-migration evaluation results was verified by combining the group components based on the geochromatography effect,two-dimension nuclear magnetic resonance analysis,and the geochemical behavior of inorganic manganese elements in the process of hydrocarbon migration.Micro-migration is a bridge connecting the hydrocarbon accumulation elements in shale formations,which reflects the whole process of shale oil generation,expulsion and accumulation,and controls the content and composition of shale oil.The identification and evaluation of shale oil micro-migration will provide new perspectives for dynamically differential enrichment mechanism of shale oil and establishing a“multi-peak model in oil generation”of shale. 展开更多
关键词 shale oil micro-migration identification micro-migration evaluation Junggar Basin Mahu Sag Lower Permian Fengcheng Formation hydrocarbon expulsion potential method
下载PDF
Numerical simulation on sand sedimentation and erosion characteristics around HDPE sheet sand barrier under different wind angles 被引量:1
11
作者 ZHANG Kai ZHANG Peili +3 位作者 ZHANG Hailong TIAN Jianjin WANG Zhenghui XIAO Jianhua 《Journal of Mountain Science》 SCIE CSCD 2024年第2期538-554,共17页
For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In t... For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In this study,using numerical simulations,we examined the behavior of High Density Polyethylene(HDPE)sheet sand barriers under different wind angles,focusing on flow field distribution,windproof efficiency,and sedimentation erosion dynamics.This study discovered that at a steady wind speed,airflow velocity varies as the angle between the airflow and the HDPE barrier changes.Specifically,a 90°angle results in the widest low-speed airflow area on the barrier’s downwind side.If the airflow is not perpendicular to the barrier,it prompts a lateral airflow movement which decreases as the angle expands.The windproof efficiency correlates directly with this angle but inversely with the wind’s speed.Notably,with a wind angle of 90°,wind speed drops by 81%.The minimum wind speed is found at 5.1H(the sand barrier height)on the barrier’s downwind side.As the angle grows,the barrier’s windproof efficiency improves,extending its protective reach.Sedimentation is most prominent on the barrier’s downwind side,as the wind angle shifts from 30°to 90°,the sand sedimentation area on the barrier’s downwind side enlarges by 14.8H.As the angle grows,sedimentation intensifies,eventually overtakes the forward erosion and enlarges the sedimentation area. 展开更多
关键词 Multi-wind direction HDPE sheet sand barrier numerical simulation Windproof efficiency Sedimentation erosion
下载PDF
Method for evaluation of geological strength index of carbonate cliff rocks:Coupled hyperspectral-digital borehole image technique 被引量:1
12
作者 Haiqing Yang Guizhong Huang +3 位作者 Chiwei Chen Yong Yang Qi Wang Xionghui Dai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4204-4215,共12页
The deterioration of unstable rock mass raised interest in evaluating rock mass quality.However,the traditional evaluation method for the geological strength index(GSI)primarily emphasizes the rock structure and chara... The deterioration of unstable rock mass raised interest in evaluating rock mass quality.However,the traditional evaluation method for the geological strength index(GSI)primarily emphasizes the rock structure and characteristics of discontinuities.It ignores the influence of mineral composition and shows a deficiency in assessing the integrity coefficient.In this context,hyperspectral imaging and digital panoramic borehole camera technologies are applied to analyze the mineral content and integrity of rock mass.Based on the carbonate mineral content and fissure area ratio,the strength reduction factor and integrity coefficient are calculated to improve the GSI evaluation method.According to the results of mineral classification and fissure identification,the strength reduction factor and integrity coefficient increase with the depth of rock mass.The rock mass GSI calculated by the improved method is mainly concentrated between 40 and 60,which is close to the calculation results of the traditional method.The GSI error rates obtained by the two methods are mostly less than 10%,indicating the rationality of the hyperspectral-digital borehole image coupled evaluation method.Moreover,the sensitivity of the fissure area ratio(Sr)to GSI is greater than that of the strength reduction factor(a),which means the proposed GSI is suitable for rocks with significant fissure development.The improved method reduces the influence of subjective factors and provides a reliable index for the deterioration evaluation of rock mass. 展开更多
关键词 Hyperspectral image Digital panoramic borehole image Geological strength index Carbonate rock mass Quantitative evaluation
下载PDF
Numerical study on local scour characteristics around submarine pipelines in the Yellow River Delta silty sandy soil under waves and currents 被引量:1
13
作者 Peng Yu Ruigeng Hu +4 位作者 Jike Zhang Qi Yang Jieru Zhao Lei Cao Chenghao Zhu 《Deep Underground Science and Engineering》 2024年第2期182-196,共15页
Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil aroun... Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil around submarine pipelines is prone to local scour,severely affecting their operational safety.With the Yellow River Delta as the research area and based on the renormalized group(RNG)k-εturbulence model and Stokes fifth-order wave theory,this study solves the Navier-Stokes(N-S)equation using the finite difference method.The volume of fluid(VOF)method is used to describe the fluid-free surface,and a threedimensional numerical model of currents and waves-submarine pipeline-silty sandy seabed is established.The rationality of the numerical model is verified using a self-built waveflow flume.On this basis,in this study,the local scour development and characteristics of submarine pipelines in the Yellow River Delta silty sandy seabed in the prototype environment are explored and the influence of the presence of pipelines on hydrodynamic features such as surrounding flow field,shear stress,and turbulence intensity is analyzed.The results indicate that(1)local scour around submarine pipelines can be divided into three stages:rapid scour,slow scour,and stable scour.The maximum scour depth occurs directly below the pipeline,and the shape of the scour pits is asymmetric.(2)As the water depth decreases and the pipeline suspension height increases,the scour becomes more intense.(3)When currents go through a pipeline,a clear stagnation point is formed in front of the pipeline,and the flow velocity is positively correlated with the depth of scour.This study can provide a valuable reference for the protection of submarine pipelines in this area. 展开更多
关键词 local scour numerical simulation submarine pipelines Yellow River Delta
下载PDF
Flow field, sedimentation, and erosion characteristics around folded linear HDPE sheet sand fence: Numerical simulation study 被引量:1
14
作者 ZHANG Kai ZHANG Hailong +4 位作者 TIAN Jianjin QU Jianjun ZHANG Xingxin WANG Zhenghui XIAO jianhua 《Journal of Mountain Science》 SCIE CSCD 2024年第1期113-130,共18页
Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy ... Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy areas. The wind and sand flow in the region is notably bi-directional. To shield railroads from sand, a unique sand fence made of folded linear high-density polyethylene(HDPE) is used, aligning with the principle that the dominant wind direction is perpendicular to the fence. This study employed field observations and numerical simulations to investigate the effectiveness of these HDPE sand fences in altering flow field distribution and offering protection. It also explored how these fences affect the deposition and erosion of sand particles. Findings revealed a significant reduction in wind speed near the fence corner;the minimum horizontal wind speed on the leeward side of the first sand fence(LSF) decreased dramatically from 3 m/s to 0.64 m/s. The vortex area on the LSF markedly impacted horizontal wind speeds. Within the LSF, sand deposition was a primary occurrence. As wind speeds increased, the deposition zone shrank, whereas the positive erosion zone expanded. Close to the folded corners of the HDPE sand fence, there was a notable shift from the positive erosion zone to a deposition zone. Field tests and numerical simulations confirmed the high windproof efficiency(WE) and sand resistance efficiency(SE) in the HDPE sand fence. Folded linear HDPE sheet sand fence can effectively slow down the incoming flow and reduce the sand content, thus achieving good wind and sand protection. This study provides essential theoretical guidance for the design and improvement of wind and sand protection systems in railroad engineering. 展开更多
关键词 Folded linear HDPE sheet sand fence numerical simulation Flow field characteristics Protection benefits
下载PDF
Numerical manifold method for thermo-mechanical coupling simulation of fractured rock mass 被引量:1
15
作者 Jiawei Liang Defu Tong +3 位作者 Fei Tan Xiongwei Yi Junpeng Zou Jiahe Lv 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期1977-1992,共16页
As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accura... As a calculation method based on the Galerkin variation,the numerical manifold method(NMM)adopts a double covering system,which can easily deal with discontinuous deformation problems and has a high calculation accuracy.Aiming at the thermo-mechanical(TM)coupling problem of fractured rock masses,this study uses the NMM to simulate the processes of crack initiation and propagation in a rock mass under the influence of temperature field,deduces related system equations,and proposes a penalty function method to deal with boundary conditions.Numerical examples are employed to confirm the effectiveness and high accuracy of this method.By the thermal stress analysis of a thick-walled cylinder(TWC),the simulation of cracking in the TWC under heating and cooling conditions,and the simulation of thermal cracking of the SwedishÄspöPillar Stability Experiment(APSE)rock column,the thermal stress,and TM coupling are obtained.The numerical simulation results are in good agreement with the test data and other numerical results,thus verifying the effectiveness of the NMM in dealing with thermal stress and crack propagation problems of fractured rock masses. 展开更多
关键词 Heat conduction Fractured rock mass Crack propagation Galerkin variation numerical manifold method(NMM)
下载PDF
Comprehensive Evaluation of Flower Border Application Value of New and Superior Plants in Hefei Area 被引量:1
16
作者 MENG Yi ZHAO Zhiyan +1 位作者 LIANG Tingwu LU Zhaoliang 《Journal of Landscape Research》 2024年第2期69-71,76,共4页
An analytic hierarchy process(AHP)was employed to assess the applicability of 18 new and superior varieties of flowers in Hefei City flower border applications.A total of 12 indicators were selected from three distinc... An analytic hierarchy process(AHP)was employed to assess the applicability of 18 new and superior varieties of flowers in Hefei City flower border applications.A total of 12 indicators were selected from three distinct aspects of adaptability,ornamental characteristics and use traits,in order to establish a comprehensive evaluation model.The results demonstrate that grade I(J≥2.685)exhibits excellent application value,encompassing six species of plants,such asHydrangeamacrophylla‘Endless Summer’;grade II(2.684≤J≤2.420)is also of notable application value,encompassing five species of plants,such asCallistemonrigidus;grade III(2.419≤J≤2.615)is of average application value,including five species of plants,such asCrocosmiacrocosmiflora;grade IV(J≤2.16)is of relatively poor application value.The evaluation results may be utilized as a theoretical reference for the promotion of new and superior varieties in the flower border of Hefei. 展开更多
关键词 Analytic hierarchy process(AHP) New and superior variety Application value Comprehensive evaluation
下载PDF
Evaluation Test Research of DR Inspection System for Circumferential Welds in Long Distance Pipeline
17
作者 WANG Changjiang WANG Xue +4 位作者 ZHANG Shimin ZHAO Yan LYU Xinyu ZHONG Qian ZHOU Guangyan 《材料导报》 EI CAS CSCD 北大核心 2024年第22期223-229,共7页
Digital radiographic(DR)testing equipment has been widely promoted and applied in the inspection of circumferential welds in oil and gas pipelines.In order to establish a comprehensive quality control system for digit... Digital radiographic(DR)testing equipment has been widely promoted and applied in the inspection of circumferential welds in oil and gas pipelines.In order to establish a comprehensive quality control system for digital radiographic testing and fully evaluate the integrated system inspection ability of equipment,personnel,and processes,a scientific and standardized evaluation method to the system is very necessary.Here investigates the precedents of relevant non-destructive testing evaluation methods at home and abroad,considers the testing characteristics of DR equipment,develops a complete set of DR testing system evaluation procedures.It deeply studies the adaptability methods of program processes from defect production to slicing processing and data statistical calculation for digital radiographic testing evaluation.To check the repeatability and reliability of the detectable system,five process welds with 200 real metallographic defects were fabricated in the laboratory.From the detected results,the DR system has good repeatability in image quality,and the detectable defect size reaches 0.85 mm under achieving 90%detection probability at a confidence level of 95%,the error of detected defect length is±2 mm,and the error of detected defect localization is±5 mm.The qualitative and quantitative detection of defects are accurate and reliable.The test further confirmed the reliable detection ability of the DR detection system,and fully validated the scientific and practical evaluation method designed.The research on the evaluation test method can serve as an important link in the quality control system for the on-site application of digital ray equipment in long-distance pipelines.The designed program,test,and evaluation content can serve as an important basis for the formulation of relevant specifications or standards. 展开更多
关键词 digital ray evaluation test REPEATABILITY RELIABILITY
下载PDF
Research on a TOPSIS energy efficiency evaluation system for crude oil gathering and transportation systems based on a GA-BP neural network
18
作者 Xue-Qiang Zhang Qing-Lin Cheng +2 位作者 Wei Sun Yi Zhao Zhi-Min Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期621-640,共20页
As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crud... As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems. 展开更多
关键词 Crude oil gathering and transportation system GA-BP neural network Energy efficiency evaluation TOPSIS evaluation method Energy saving and consumption reduction
下载PDF
PARE:Privacy-Preserving Data Reliability Evaluation for Spatial Crowdsourcing in Internet of Things
19
作者 Peicong He Yang Xin Yixian Yang 《Computers, Materials & Continua》 SCIE EI 2024年第8期3067-3084,共18页
The proliferation of intelligent,connected Internet of Things(IoT)devices facilitates data collection.However,task workers may be reluctant to participate in data collection due to privacy concerns,and task requesters... The proliferation of intelligent,connected Internet of Things(IoT)devices facilitates data collection.However,task workers may be reluctant to participate in data collection due to privacy concerns,and task requesters may be concerned about the validity of the collected data.Hence,it is vital to evaluate the quality of the data collected by the task workers while protecting privacy in spatial crowdsourcing(SC)data collection tasks with IoT.To this end,this paper proposes a privacy-preserving data reliability evaluation for SC in IoT,named PARE.First,we design a data uploading format using blockchain and Paillier homomorphic cryptosystem,providing unchangeable and traceable data while overcoming privacy concerns.Secondly,based on the uploaded data,we propose a method to determine the approximate correct value region without knowing the exact value.Finally,we offer a data filtering mechanism based on the Paillier cryptosystem using this value region.The evaluation and analysis results show that PARE outperforms the existing solution in terms of performance and privacy protection. 展开更多
关键词 Spatial crowdsourcing PRIVACY-PRESERVING data evaluation IOT blockchain
下载PDF
Numerical simulation of microwave-induced cracking and melting of granite based on mineral microscopic models
20
作者 Xiaoli Su Diyuan Li +3 位作者 Junjie Zhao Mimi Wang Xing Su Aohui Zhou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1512-1524,共13页
This study introduces a coupled electromagnetic–thermal–mechanical model to reveal the mechanisms of microcracking and mineral melting of polymineralic rocks under microwave radiation.Experimental tests validate the... This study introduces a coupled electromagnetic–thermal–mechanical model to reveal the mechanisms of microcracking and mineral melting of polymineralic rocks under microwave radiation.Experimental tests validate the rationality of the proposed model.Embedding microscopic mineral sections into the granite model for simulation shows that uneven temperature gradients create distinct molten,porous,and nonmolten zones on the fracture surface.Moreover,the varying thermal expansion coefficients and Young's moduli among the minerals induce significant thermal stress at the mineral boundaries.Quartz and biotite with higher thermal expansion coefficients are subjected to compression,whereas plagioclase with smaller coefficients experiences tensile stress.In the molten zone,quartz undergoes transgranular cracking due to theα–βphase transition.The local high temperatures also induce melting phase transitions in biotite and feldspar.This numerical study provides new insights into the distribution of thermal stress and mineral phase changes in rocks under microwave irradiation. 展开更多
关键词 MICROWAVE numerical modeling microcracking phase change GRANITE
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部