Besides seasonal variation, instantaneous variation of thermal layer will occur under the effects of tide, tidal current and wind disturbance. In this study the numerical simulation has been first carried out on fluct...Besides seasonal variation, instantaneous variation of thermal layer will occur under the effects of tide, tidal current and wind disturbance. In this study the numerical simulation has been first carried out on fluctuation and undulation of thermal layer under influence of tide (simultaneous input of 8 tidal components). The study reveals the geographic distribution of thermal layer fluctuation in the entire study region and temporal and spatial variations of the undulation in tidal period superposing on the fluctuation. Especially, the wave with large amplitude simulated is consistent with observation in the channal and the sea areas with a convex coastline and complex variation of depth, internal relations of tide, tidal current, residual current as well as the factors such as geography, and the fluctuation of thermal layer is induced by residual current due to unsymmetry which occurs as a result of the tidal movement in lower layer influenced by friction and geography, meanwhile, analysis indicates that the fluctuation of thermal layer and tidal oscillation are different undulations in character.展开更多
-In this paper, numerical modelling of the fluctuation of the thermocline in the Bohai Sea has been made using a two-dimensional nonlinear model in stratified ocean and the model for the depth of the thermocline under...-In this paper, numerical modelling of the fluctuation of the thermocline in the Bohai Sea has been made using a two-dimensional nonlinear model in stratified ocean and the model for the depth of the thermocline under the effects of wind stirring. The computed results depict the variations of the fluctuation of the thermocline driven by different kinds of wind fields. The fluctuation of the thermocline in the Bohai Sea varies somewhat with different directions, paths and locations of typhoon (cyclone). Under the effects of strong wind, the thermoclines both sink due to mixing and fluctuate. Furthermore, the fluctuation of the thermocline speeds up mixing. At last, the thermoclines disappear after 12-15 h when the strong wind increases from Force 6 to Force 9.展开更多
A single-relaxation-time fluctuating lattice-Boltzmann (LB) model for direct numerical simulation (DNS) of particle Brownian motion is established by adding a fluctuating component to the lattice-Boltzmann equatio...A single-relaxation-time fluctuating lattice-Boltzmann (LB) model for direct numerical simulation (DNS) of particle Brownian motion is established by adding a fluctuating component to the lattice-Boltzmann equations (LBEs). The fluctuating term is proved to be the random stress tensor in fluctuating hydrodynamics by recovering Navier-Stokes equations from LBEs through a Chapman-Enskog expansion. A three-dimensional implementation of the model is also presented, along with simulations of a single spherical particle and 125 spherical particles at short times. Numerical results including the meansquare displacement, velocity autocorrelation function and self-diffusion coefficient of particles compare favorably with theoretical results and previous numerical results.展开更多
文摘Besides seasonal variation, instantaneous variation of thermal layer will occur under the effects of tide, tidal current and wind disturbance. In this study the numerical simulation has been first carried out on fluctuation and undulation of thermal layer under influence of tide (simultaneous input of 8 tidal components). The study reveals the geographic distribution of thermal layer fluctuation in the entire study region and temporal and spatial variations of the undulation in tidal period superposing on the fluctuation. Especially, the wave with large amplitude simulated is consistent with observation in the channal and the sea areas with a convex coastline and complex variation of depth, internal relations of tide, tidal current, residual current as well as the factors such as geography, and the fluctuation of thermal layer is induced by residual current due to unsymmetry which occurs as a result of the tidal movement in lower layer influenced by friction and geography, meanwhile, analysis indicates that the fluctuation of thermal layer and tidal oscillation are different undulations in character.
文摘-In this paper, numerical modelling of the fluctuation of the thermocline in the Bohai Sea has been made using a two-dimensional nonlinear model in stratified ocean and the model for the depth of the thermocline under the effects of wind stirring. The computed results depict the variations of the fluctuation of the thermocline driven by different kinds of wind fields. The fluctuation of the thermocline in the Bohai Sea varies somewhat with different directions, paths and locations of typhoon (cyclone). Under the effects of strong wind, the thermoclines both sink due to mixing and fluctuate. Furthermore, the fluctuation of the thermocline speeds up mixing. At last, the thermoclines disappear after 12-15 h when the strong wind increases from Force 6 to Force 9.
基金supported by the Major Program of the National Natural Science Foundation of China with Grant No.10632070
文摘A single-relaxation-time fluctuating lattice-Boltzmann (LB) model for direct numerical simulation (DNS) of particle Brownian motion is established by adding a fluctuating component to the lattice-Boltzmann equations (LBEs). The fluctuating term is proved to be the random stress tensor in fluctuating hydrodynamics by recovering Navier-Stokes equations from LBEs through a Chapman-Enskog expansion. A three-dimensional implementation of the model is also presented, along with simulations of a single spherical particle and 125 spherical particles at short times. Numerical results including the meansquare displacement, velocity autocorrelation function and self-diffusion coefficient of particles compare favorably with theoretical results and previous numerical results.