期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Direct numerical simulation of viscoelastic-fluid-based nanofluid turbulent channel flow with heat transfer 被引量:2
1
作者 阳倦成 李凤臣 +2 位作者 蔡伟华 张红娜 宇波 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第8期404-420,共17页
Our previous experimental studies have confirmed that viscoelastic-fluid-based nanofluid(VFBN) prepared by suspending nanoparticles in a viscoelastic base fluid(VBF, behaves drag reduction at turbulent flow state) can... Our previous experimental studies have confirmed that viscoelastic-fluid-based nanofluid(VFBN) prepared by suspending nanoparticles in a viscoelastic base fluid(VBF, behaves drag reduction at turbulent flow state) can reduce turbulent flow resistance as compared with water and enhance heat transfer as compared with VBF. Direct numerical simulation(DNS) is performed in this study to explore the mechanisms of heat transfer enhancement(HTE) and flow drag reduction(DR) for the VFBN turbulent flow. The Giesekus model is used as the constitutive equation for VFBN. Our previously proposed thermal dispersion model is adopted to take into account the thermal dispersion effects of nanoparticles in the VFBN turbulent flow. The DNS results show similar behaviors for flow resistance and heat transfer to those obtained in our previous experiments. Detailed analyses are conducted for the turbulent velocity, temperature, and conformation fields obtained by DNSs for different fluid cases, and for the friction factor with viscous, turbulent, and elastic contributions and heat transfer rate with conductive, turbulent and thermal dispersion contributions of nanoparticles, respectively. The mechanisms of HTE and DR of VFBN turbulent flows are then discussed. Based on analogy theory, the ratios of Chilton–Colburn factor to friction factor for different fluid flow cases are investigated, which from another aspect show the significant enhancement in heat transfer performance for some cases of water-based nanofluid and VFBN turbulent flows. 展开更多
关键词 viscoelastic-fluid-based nanofluid direct numerical simulation thermal dispersion model turbulent drag reduction heat transfer e
下载PDF
Numerical and Experimental Investigation on the In-Flight Melting Behaviour of Granulated Powders in Induction Thermal Plasmas
2
作者 姚耀春 Md.M.HOSSAIN T.WATANABE 《Plasma Science and Technology》 SCIE EI CAS CSCD 2009年第1期71-77,共7页
An innovative in-flight glass melting technology with thermal plasmas was developed for the purpose of energy conservation and environment protection. In this study, modelling and experiments of argon-oxygen induction... An innovative in-flight glass melting technology with thermal plasmas was developed for the purpose of energy conservation and environment protection. In this study, modelling and experiments of argon-oxygen induction thermal plasmas were conducted to investigate the melting behaviour of granulated soda-lime glass powders injected into the plasma. A two-dimensional local thermodynamic equilibrium (LTE) model was performed to simulate the heat and momentum transfer between plasma and particle. Results showed that the particle temperature was strongly affected by the flow rate of carrier gas and the particle size of raw material. A higher flow rate of carrier gas led to lower particle temperature and less energy transferred to particles which resulted in lower vitrification. The incomplete melting of large particles was attributed to the lower central temperature of the particle caused by a larger heat capacity. The numerical analysis explained well the experimental results, which can provide valuable practical guidelines for the process control in the melting process for the glass industry. 展开更多
关键词 induction thermal plasmas size. heat transfer numerical modelling carrier gas flow rate particle
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部