期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
A hybrid model for numerical wave forecasting and its implementation-Ⅰ.The wind wave model 被引量:14
1
作者 Wen Shengchang (S.C. Wen)1, Zhang Dacuo, Chen Bohai and Guo Peifang Institute of Physical Oceanography, Ocean University of Qingdao (Formerly, Shandong College of Oceanography), Qingdao, China 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1989年第1期1-14,共14页
The authors make an endeavor to explain why a new hybrid wave model is here proposed when several such models have already been in operation and the so- called third generation wave modej is proving attractive. This p... The authors make an endeavor to explain why a new hybrid wave model is here proposed when several such models have already been in operation and the so- called third generation wave modej is proving attractive. This part of the paper is devoted to the wind wave model. Both deep and shallow water models have been developed, the former being actually a special case of the latter when water depth is great. The deep water model is exceptionally simple in form. Significant wave height is the only prognostic variable. In comparison with the usual methods to compute the energy input and dissipations empirically or by 'tuning', the proposed model has the merit that the effects of all source terms are combined into one term which is computed through empirical growth relations for significant waves, these relations being, relatively speaking, easier and more reliable to obtain than those for the source terms in the spectral energy balance equation. The discrete part of the model and the implementation of the model as a whole will be discussed in the second part of the present paper. 展开更多
关键词 WAVE A hybrid model for numerical wave forecasting and its implementation The wind wave model
下载PDF
A hybrid model for numerical wave forecasting and its implementation-Ⅱ .The discrete part and implementation of the model 被引量:3
2
作者 Zhang Dacuo, Wu Zengmao, Jiang Decai, Wang Wei, Chen Bohai, Tai Weitao, Wen Shengchang,Xu Qichun and Guo Peifang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 1992年第2期157-178,共22页
In the first part of the present paper we have explained why we manage to formulate another wave prediction model when so many of them, including the so-called third generation model, have already been in use. The win... In the first part of the present paper we have explained why we manage to formulate another wave prediction model when so many of them, including the so-called third generation model, have already been in use. The wind-wave part of the proposed model has also been given. Now we proceed to discuss the swell part,the implementation of the model as a prediction method,mumerical experiments done with ideal wind fields and hindcasts made in the Bohai Sea,in the neighboring seas adjacent to China and in the Northwest Pacific. 展开更多
关键词 WAVE The discrete part and implementation of the model A hybrid model for numerical wave forecasting and its implementation
下载PDF
A Generalized Non-Linear Flow Law Based on Modified Zerilli-Armstrong Model and Its Implementation into Abaqus/Explicit FEM Code
3
作者 Pierre Tize Mha Amèvi Tongne Olivier Pantalé 《World Journal of Engineering and Technology》 2022年第2期334-362,共29页
Non-linear numerical modeling, widely used in research and development to understand many complex processes such as forming or machining, does not guarantee the success of a study to be performed. Indeed, the numerica... Non-linear numerical modeling, widely used in research and development to understand many complex processes such as forming or machining, does not guarantee the success of a study to be performed. Indeed, the numerical simulation uses finite element codes where the models already integrated are not based on shapes adjustable to any type of study. In this study, a new form of non-linear constitutive flow law based on the Modified Zerilli-Armstrong model, which can answer the above problem, has been developed to apply it to the numerical simulation of two different tests (a quasi-static compression test, the necking of a circular bar). This flow law is based on the modified Zerilli-Armstrong model, which, together with the new modified Johnson-Cook model, has been compared to appreciate the relevance of the proposal. For that, an implementation of this new law via the VUHARD subroutine into the Abaqus/Explicit finite element code was made to model the two tests. The comparison of the results obtained (from identification) by our proposed law with those obtained using the NMJC shows that this new law better approaches the experiments than the other one. This is also shown through the numerical results using the Abaqus software. It can be said that this way of formulating a flow law allows highlighting the great performance of the proposed approach. Although this law has been only used for quasi-static tests, we can say that it can also be used in dynamic tests. 展开更多
关键词 Zerilli-Armstrong Flow Law Constitutive Behavior Finite Element Method numerical implementation Johnson-Cook Flow Law
下载PDF
A modified damage and fracture phase field model considering heterogeneity for rock‐like materials
4
作者 Xuxin Chen Zhe Qin 《Deep Underground Science and Engineering》 2023年第3期286-294,共9页
Damage and fracture are the most extensive failure modes of rock materials,which may easily induce disaster and instability of engineering structures.This study developed a nonlocal damage fracture phase field model f... Damage and fracture are the most extensive failure modes of rock materials,which may easily induce disaster and instability of engineering structures.This study developed a nonlocal damage fracture phase field model for rocks considering the heterogeneity of rocks.The modified phase field model introduced the heterogeneity of fracture parameters and modified the governing equations.Meanwhile,the free energy was constructed by the elastic strain energy sphere‐bias decomposition and the plastic strain energy.As for the numerical implementation,the three layers finite elements method structure was used in the frame of the finite element method.The ability of the modified phase field model has been illustrated by reproducing the experiment results of rock samples with pre‐existing cracks under compression. 展开更多
关键词 crack propagation HETEROGENEITY numerical implementation phase field method rock‐like materials
下载PDF
DYNAMIC FREE ENERGY HYSTERESIS MODEL IN MAGNETOSTRICTIVE ACTUATORS 被引量:1
5
作者 TIAN Chun WANG Hongzhen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第1期85-88,共4页
A dynamic free energy hysteresis model in magnetostrictive actuators is presented. It is the free energy hysteresis model coupled to an ordinary different equation in an unusual way. According to its special structure... A dynamic free energy hysteresis model in magnetostrictive actuators is presented. It is the free energy hysteresis model coupled to an ordinary different equation in an unusual way. According to its special structure, numerical implementation method of the dynamic model is provided. The resistor parameter in the dynamic model changes according to different frequency ranges. This makes numerical implementation results reasonable in the discussed operating frequency range. The validity of the dynamic free energy model is illustrated by comparison with experimental data. 展开更多
关键词 Dynamic free energy model Hysteresis Magnetostrictive actuators numerical implementation
下载PDF
Acoustic viscoelastic modeling by frequency-domain boundary element method 被引量:1
6
作者 Xizhu Guan Li-Yun Fu Weijia Sun 《Earthquake Science》 CSCD 2017年第2期97-105,共9页
Earth medium is not completely elastic, with its viscosity resulting in attenuation and dispersion of seismic waves. Most viscoelastic numerical simulations are based on the finite-difference and finite-element method... Earth medium is not completely elastic, with its viscosity resulting in attenuation and dispersion of seismic waves. Most viscoelastic numerical simulations are based on the finite-difference and finite-element methods. Targeted at viscoelastic numerical modeling for multilayered media, the constant-Q acoustic wave equation is transformed into the corresponding wave integral representation with its Green's function accounting for viscoelastic coefficients. An efficient alternative for full-waveform solution to the integral equation is proposed in this article by extending conventional frequency-domain boundary element methods to viscoelastic media. The viscoelastic boundary element method enjoys a distinct characteristic of the explicit use of boundary continuity conditions of displacement and traction, leading to a semi-analytical solution with sufficient accuracy for simulating the viscoelastic effect across irregular interfaces. Numerical experiments to study the viscoelastic absorption of different Q values demonstrate the accuracy and applicability of the method. 展开更多
关键词 Viscoelastic media Viscoelastic boundary element method Frequency-domain implementation Viscoelastic numerical modeling
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部