The interaction of a shock wave with a spherical helium bubble is investigated numerically by using the high- resolution piecewise parabolic method (PPM), in which the viscous and turbulence effects are both conside...The interaction of a shock wave with a spherical helium bubble is investigated numerically by using the high- resolution piecewise parabolic method (PPM), in which the viscous and turbulence effects are both considered. The bubble is of the same size and is accelerated by a planar shock of different Mach numbers (Ma). The re- suits of low Ma cases agree quantitatively with those of experiments [G. Layes, O. Le M4tayer. Phys. Fluids 19 (2007) 042105]. With the increase of Ma, the final geometry of the bubble becomes quite different, the com- pression ratio is highly raised, and the time-dependent mean bubble velocity is also influenced. The compression ratios measured can be well normalized when Ma is low, while less agreement has been achieved for high Ma cases. In addition, the mixedness between two fluids is enhanced greatly as Ma increases. Some existed scaling laws of these quantities for the shock wave strength cannot be directly applied to high Ma cases.展开更多
This research work numerically analyzes 2D,steady state,mixed convective heat transfer for Newtonian fluids in lid driven square enclosure with centered triangular block(blockage—10%or 30%)maintained either at the ...This research work numerically analyzes 2D,steady state,mixed convective heat transfer for Newtonian fluids in lid driven square enclosure with centered triangular block(blockage—10%or 30%)maintained either at the constant wall temperature or constant heat flux thermal conditions.The fluid flow in the enclosure is initiated by top moving wall in+x-direction,while all other walls are stationary.The top and bottom walls are thermally insulated.In particular,the governing field equations are solved for range of governing parameters such as,Reynolds number(1–1000),Prandtl number(1–100),and Grashof number展开更多
Based on the analysis of factors affecting transient temperature field of aircraft fuel tank and coupled heat transfer mechanism, a mathematical model of transient coupled heat transfer, including the dynamic- chan...Based on the analysis of factors affecting transient temperature field of aircraft fuel tank and coupled heat transfer mechanism, a mathematical model of transient coupled heat transfer, including the dynamic- change of fuel quality, the internal heat transfer, the external aerodynamic convection and the radiation heat transfer, is established. Taking the aerodynamic convection and radiation heat transfer outside the tank as the third kinds of thermal boundary conditions for the thermal analysis of the fuel tank, calculation of internal and external coupling heat of fuel tank is decoupled. Ther^nal network method combined with hierarchical dynamic- grid is used to deal with the fuel consumption, and carry on the heat transfer analysis of the fuel tank. The numerical method for the transient temperature field of aircraft fuel tank is established. Through the simulation calculation, the transient temperature distribution of the fuel tank under different flight conditions is obtained, and the influence of the fuel mass and the external thermal environment on the temperature field is analyzed.展开更多
The air bag deformation data were obtained by high-speed dynamic videos experiments. Based on gas–liquid flow VOF model, dynamic mesh technique and deformation data, numerical simulations for different structure mode...The air bag deformation data were obtained by high-speed dynamic videos experiments. Based on gas–liquid flow VOF model, dynamic mesh technique and deformation data, numerical simulations for different structure models were achieved, and the law of water motion and influencing factors were analyzed.The results show that the flow in the length direction of the jig is smooth, and second pulsation appears in the separation time and forms the secondary separation. The installation position of screen and the number of air bags have a great influence on the uniformity of flow and velocity. The screen height cannot be too low to avoid forming the unstable flow. At the same time, the screen height cannot be too high, otherwise water velocity will be too small and was unable to provide enough power. At the height of 1.4m,velocity unevenness is minimum and the best uniform flow can be obtained. Compared with double air bags, there are the following features of single air bag: water flow is not smooth, the time achieving the maximum velocity is too long, maximum velocity is smaller, and overall effect is worse than double air bags.展开更多
The dual algorithm for minimax problems is further studied in this paper.The resulting theoretical analysis shows that the condition number of the corresponding Hessian of the smooth modified Lagrange function with ch...The dual algorithm for minimax problems is further studied in this paper.The resulting theoretical analysis shows that the condition number of the corresponding Hessian of the smooth modified Lagrange function with changing parameter in the dual algorithm is proportional to the reciprocal of the parameter,which is very important for the efficiency of the dual algorithm.At last,the numerical experiments are reported to validate the analysis results.展开更多
Random packed beds have more complex interior structure than structured beds and are widely used in industry and engineering. CFD simulation was carried out to investigate and analyze the local flow and heat transfer ...Random packed beds have more complex interior structure than structured beds and are widely used in industry and engineering. CFD simulation was carried out to investigate and analyze the local flow and heat transfer in a 120-sphere random packed bed. 3D Navier-Stokes equation was solved with a finite volume formulation based on the Chimera meshing technique. Investigation was focused on low Reynolds number flow (Re=4.6-56.2), which typically occurs in packed bed reactors in bio-chemical fields. Detailed temperature field information was obtained. Inhomogeneity of flow and heat transfer due to the non-uniform distribution of void fraction was discussed and analyzed.展开更多
A binary decision diagram(BDD) is a data structure that is used to represent a Boolean function.Converting fault tree into BDD can effectively simplify counting processes and improve the accuracy and effectiveness of ...A binary decision diagram(BDD) is a data structure that is used to represent a Boolean function.Converting fault tree into BDD can effectively simplify counting processes and improve the accuracy and effectiveness of the results. However, due to various types of uncertainties in reliability data, we cannot obtain precise failure probabilities. In order to accurately quantify the certainties and obtain much more reliable results, we use BDD method based on fuzzy set theory for reliability quantitative analysis. In this regard, we take W-axis feeding system of heavy-duty computer numerical control(CNC) machine as a project example and adopt fuzzy BDD quantitative analysis method to analyze its reliability. The analysis results(aided by computer calculation)illustrate the effectiveness of the method proposed in this paper.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11232011 and 11402262the 111 Project under Grant No B07033the China Postdoctoral Science Foundation Funded Project under Grant No 2014M561833
文摘The interaction of a shock wave with a spherical helium bubble is investigated numerically by using the high- resolution piecewise parabolic method (PPM), in which the viscous and turbulence effects are both considered. The bubble is of the same size and is accelerated by a planar shock of different Mach numbers (Ma). The re- suits of low Ma cases agree quantitatively with those of experiments [G. Layes, O. Le M4tayer. Phys. Fluids 19 (2007) 042105]. With the increase of Ma, the final geometry of the bubble becomes quite different, the com- pression ratio is highly raised, and the time-dependent mean bubble velocity is also influenced. The compression ratios measured can be well normalized when Ma is low, while less agreement has been achieved for high Ma cases. In addition, the mixedness between two fluids is enhanced greatly as Ma increases. Some existed scaling laws of these quantities for the shock wave strength cannot be directly applied to high Ma cases.
文摘This research work numerically analyzes 2D,steady state,mixed convective heat transfer for Newtonian fluids in lid driven square enclosure with centered triangular block(blockage—10%or 30%)maintained either at the constant wall temperature or constant heat flux thermal conditions.The fluid flow in the enclosure is initiated by top moving wall in+x-direction,while all other walls are stationary.The top and bottom walls are thermally insulated.In particular,the governing field equations are solved for range of governing parameters such as,Reynolds number(1–1000),Prandtl number(1–100),and Grashof number
基金Sponsored by the National Natural Science Foundation of China(Grant No.51676055 and 51536001)
文摘Based on the analysis of factors affecting transient temperature field of aircraft fuel tank and coupled heat transfer mechanism, a mathematical model of transient coupled heat transfer, including the dynamic- change of fuel quality, the internal heat transfer, the external aerodynamic convection and the radiation heat transfer, is established. Taking the aerodynamic convection and radiation heat transfer outside the tank as the third kinds of thermal boundary conditions for the thermal analysis of the fuel tank, calculation of internal and external coupling heat of fuel tank is decoupled. Ther^nal network method combined with hierarchical dynamic- grid is used to deal with the fuel consumption, and carry on the heat transfer analysis of the fuel tank. The numerical method for the transient temperature field of aircraft fuel tank is established. Through the simulation calculation, the transient temperature distribution of the fuel tank under different flight conditions is obtained, and the influence of the fuel mass and the external thermal environment on the temperature field is analyzed.
基金provided by the Project of National Scientific and Technical Supporting Programs Funded of China(No.2012BAB13B03)
文摘The air bag deformation data were obtained by high-speed dynamic videos experiments. Based on gas–liquid flow VOF model, dynamic mesh technique and deformation data, numerical simulations for different structure models were achieved, and the law of water motion and influencing factors were analyzed.The results show that the flow in the length direction of the jig is smooth, and second pulsation appears in the separation time and forms the secondary separation. The installation position of screen and the number of air bags have a great influence on the uniformity of flow and velocity. The screen height cannot be too low to avoid forming the unstable flow. At the same time, the screen height cannot be too high, otherwise water velocity will be too small and was unable to provide enough power. At the height of 1.4m,velocity unevenness is minimum and the best uniform flow can be obtained. Compared with double air bags, there are the following features of single air bag: water flow is not smooth, the time achieving the maximum velocity is too long, maximum velocity is smaller, and overall effect is worse than double air bags.
文摘The dual algorithm for minimax problems is further studied in this paper.The resulting theoretical analysis shows that the condition number of the corresponding Hessian of the smooth modified Lagrange function with changing parameter in the dual algorithm is proportional to the reciprocal of the parameter,which is very important for the efficiency of the dual algorithm.At last,the numerical experiments are reported to validate the analysis results.
基金supported financially by the Shanghai Pujiang Program (07pj14072)the Shanghai Leading Academic Disci-pline Project (J05051)
文摘Random packed beds have more complex interior structure than structured beds and are widely used in industry and engineering. CFD simulation was carried out to investigate and analyze the local flow and heat transfer in a 120-sphere random packed bed. 3D Navier-Stokes equation was solved with a finite volume formulation based on the Chimera meshing technique. Investigation was focused on low Reynolds number flow (Re=4.6-56.2), which typically occurs in packed bed reactors in bio-chemical fields. Detailed temperature field information was obtained. Inhomogeneity of flow and heat transfer due to the non-uniform distribution of void fraction was discussed and analyzed.
基金the National Natural Science Foundation of China(No.51405065)
文摘A binary decision diagram(BDD) is a data structure that is used to represent a Boolean function.Converting fault tree into BDD can effectively simplify counting processes and improve the accuracy and effectiveness of the results. However, due to various types of uncertainties in reliability data, we cannot obtain precise failure probabilities. In order to accurately quantify the certainties and obtain much more reliable results, we use BDD method based on fuzzy set theory for reliability quantitative analysis. In this regard, we take W-axis feeding system of heavy-duty computer numerical control(CNC) machine as a project example and adopt fuzzy BDD quantitative analysis method to analyze its reliability. The analysis results(aided by computer calculation)illustrate the effectiveness of the method proposed in this paper.