The reliability of the numerical K ε model for determining wind pressure on building surfaces is evaluated. The solution algorithm is based on a body fitted non orthogonal curvilinear coordinate system and a st...The reliability of the numerical K ε model for determining wind pressure on building surfaces is evaluated. The solution algorithm is based on a body fitted non orthogonal curvilinear coordinate system and a staggered grid arrangement. The covariant velocity components are chosen as dependent variables. Convective fluxes are described by the Power Law Scheme. The grids are generated with an elliptic grid generator using control functions. The results compare favorably with those by Oxford wind tunnel measurements.展开更多
In order to study the dynamic and electrical coupling response characteristics of Metal Oxide Semiconductor Controlled Thyristor(MCT)high-voltage switch under the synergic action of mechanical load and high voltage,th...In order to study the dynamic and electrical coupling response characteristics of Metal Oxide Semiconductor Controlled Thyristor(MCT)high-voltage switch under the synergic action of mechanical load and high voltage,the separated Hopkinson pressure bar(SHPB)test system was used to simulate different impact load environments,and combined with the multi-layer high-voltage ceramic capacitor charging and discharging system,the instantaneous electrical signals of MCT high-voltage switch were collected.Combined with numerical simulation and theoretical analysis,the failure mode and stress wave propagation characteristics of MCT high voltage switch were determined.The mechanical and electrical coupling response characteristics and failure mechanism of MCT high voltage switch under dynamic load were revealed from macroscopic and microscopic levels.The results show that the damage modes of MCT high-voltage switches can be divided into non-functional damage,recoverable functional damage,non-recoverable damage and structural damage.Due to the gap between the metal gate and the oxide layer,the insulating oxide layer was charged.After placing for a period of time,the elastic deformation of the metal gate partially recovered and the accumulated charge disappeared,which induced the recoverable functional damage failure of the device.In addition,obvious cracks appeared on both sides of the monocrystalline silicon inside the MCT high-voltage switch,leading to unrecoverable damage of the device.展开更多
This paper aims to reduce the wind resistance of the self-designed offshore tourism platform by optimizing its superstructure,and a transparent shape design is finally suggested.A numerical simulation was performed to...This paper aims to reduce the wind resistance of the self-designed offshore tourism platform by optimizing its superstructure,and a transparent shape design is finally suggested.A numerical simulation was performed to calculate the wind load on the platform to test the effect of wind resistance reduction.Two original scale models(sealed and transparent)were established in accordance with the design requirements.The numerical simulation uses the FLUENT software combined with the built-in self-compiled user-defined function(UDF).The stochastic wind was also applied on the basis of the Davenport wind spectrum.The detached eddy simulation(DES)model was used to solve the NS equation.Numerical simulation results show that the wind resistance reduction for the transparent shape model is subtle in the horizontal direction but can effectively reduce the drag force and moment in the vertical direction.Moreover,the force variation of the transparent shape model under different wind attack angles decreases,which reduces the wind load fluctuations.展开更多
Wind energy has emerged as a promising renewable energy source and wind turbine technology has developed rapidly in recent years.Improved wind turbine performance depends heavily on the design and optimization of wind...Wind energy has emerged as a promising renewable energy source and wind turbine technology has developed rapidly in recent years.Improved wind turbine performance depends heavily on the design and optimization of wind blades.This work offers a critical evaluation of the state of the art in the field of numerical modelling and simulation analysis,which have become crucial for the design and optimization of wind blades.The evaluation of the literature includes considerable research on the application of numerical methods for the structural and aerodynamic performance of wind blades under various operating situations,as well as for analysis and optimization of wind blades.The article illustrates how numerical techniques can be used to analyse wind blade performance and maximize design efficiency.The study of blade performance under various wind conditions has also been made possible through the use of simulation analysis,thus enhancing the efficiency and dependability of wind turbines.Improvements in wind turbine efficiency and dependability,and ultimately the move towards a more sustainable energy future,will be greatly helpful for the development of numerical modelling and simulation techniques.展开更多
The current research of tire aerodynamics mainly focus on the isolated and simplified tread tire.Compared with the real complex pattern tire,the tread pattern structure and deformed profile of a loaded tire has a grea...The current research of tire aerodynamics mainly focus on the isolated and simplified tread tire.Compared with the real complex pattern tire,the tread pattern structure and deformed profile of a loaded tire has a greatly influence on tire aerodynamic drag.However,the mechanisms of the isolated loaded tires with different tread patterns effects on the aerodynamic drag are subjects worthy of discussion.The purpose of this study is to experimentally and compu-tationally investigate the aerodynamic characteristics of three tires 185/65 R14 with different patterns under loaded.A wind tunnel test model was first established using three-dimensional(3D)printing with a ratio of 1:1,and the pres-sure coefficients C_(p) of the three tires with different patterns are measured.The paper then conducted computational fluid dynamics(CFD)simulations for analyzing the pressure and flow characteristics.The accuracy of CFD simulation is verified by comparing the simulation results with the test results of pressure coefficients C_(p),and they are of good consistency.While,the general analysis of pressure coefficients C_(p) results of the three tires indicates high-pressure area on the windward surface,and occurrence of low-pressure area on the leeward surface,the pressure coefficients C_(p) of all three tires decreased firstly and then increased along in the air flow direction.The authors finally analyzed the effect of tread patterns on the flow field around the tire and revealed the differences between flow characteristics and aerodynamic drag.The results show that,angle of tire lateral groove has great effect on the flow field characteristics such that;the more the angle of lateral groove agrees with the air flow direction,the less the flow separation and flow vortices,and a minimum observable aerodynamic drag.The research provides a guidance for the design of low aerodynamic drag tires,and helps to illustrate the impact of tire aerodynamics on the car body in the future.展开更多
Numerical investigations of floating platforms with different outer column inclined angles under two operating conditions of regular wave and irregular wave are presented in this paper.A coupled aero-hydrodynamic comp...Numerical investigations of floating platforms with different outer column inclined angles under two operating conditions of regular wave and irregular wave are presented in this paper.A coupled aero-hydrodynamic computational fluid dynamics in-house solver FOWT-UALM-SJTU is applied for the calculation.First,the validation for wave and wind generation are conducted to determine mesh distribution strategy.Based on these,the hydrodynamic motion response,aerodynamic performance and wake flow are analyzed to explore the impact of inclined angle.Conduct spectral analysis on the motion response under wave action,discuss the aerodynamic attack angle and inflow wind velocity along the blade spanwise direction in detail,reveal different trends in wake development and recovery.The results show that for the regular wave condition with the increase of inclined angles,the equilibrium position of surge motion is constantly rising,while pitch is decreasing.The maximum root mean square(rms)value occurs at angle=30°,compared with the original OC4 FOWT,the rms in power and thrust increase 0.35%,0.71%.And there are two low regions of attack angle and high regions of axial inflow velocity,corresponding to aerodynamic loads.The spectral analysis indicates that the natural frequency of pitch motion will increase with inclined angle.Besides,from the middle to far region of wake flow,the velocity recovery of FOWT with inclined angle will become faster,which is beneficial for downstream turbines to enhance more wind energy.展开更多
In order to explore the internal wind field flow characteristics of T4-72 type centrifugal fan, the three-dimensional model was established based on PRO/E software. Combined with computational fluid Dynamics Software ...In order to explore the internal wind field flow characteristics of T4-72 type centrifugal fan, the three-dimensional model was established based on PRO/E software. Combined with computational fluid Dynamics Software Fluent 6.3, the standard model and SIMPLEC algorithm were used to simulate the wind field inside the fan. Analysis of the flow characteristics, velocity distributed and pressure distributed of the internal fluid model of the T4-72 centrifugal fan, combined with the theoretical formula to obtain the full pressure, power and efficiency performance parameters of the fan. The centrifugal fan performance curve is drawn. While compared with the experimental data, it is found that the internal flow disturbance is strong when the fan is running under low load condition and high load condition, which affects the performance of the fan and reduces the life of the fan. The numerical simulation results are consistent with the experimental results. The overall performance parameters of the fan are in good agreement, verifying the reliability of the simulation results;when the fan works between 1 - 1.4 times the rated flow rate, it can obtain a more stable flow field while maintaining higher efficiency, which provides a new idea for the optimization of the subsequent fan.展开更多
The buffeting performance of kilometer-level high-speed railway suspension bridges has a great impact on the smooth operation of high-speed trains.To investigate the buffeting performance of the structure significantl...The buffeting performance of kilometer-level high-speed railway suspension bridges has a great impact on the smooth operation of high-speed trains.To investigate the buffeting performance of the structure significantly different from traditional suspension bridges,the first long-span high-speed railway suspension bridge,Wufengshan Yangtze River Bridge(WYRB),is taken as a numerical example to demonstrate the effects of structural parameters and wind field parameters on the buffeting responses.Based on the design information,the spatial finite element model(FEM)of WYRB is established before testing its accuracy.The fluctuating wind fields are simulated via both classical and stochastic wave based spectral representation method(SRM).Finite element method is further taken to analyze the parametric sensitivity on wind induced buffeting responses in time domain.The results show that the vertical displacement is more sensitive to the changing dead load than the lateral and torsional ones.The larger stiffness of the main girder and the lower sag-to-span ratio are both helpful to reduce the buffeting responses.Wind spectrum and coherence function are key influencing factors to the responses so setting proper wind field parameters are essential in the wind-resistant design stage.The analytical results can provide references for wind resistance analysis and selection of structural and fluctuating wind field parameters for similar long-span high-speed railway suspension bridges.展开更多
Flow structure and wind pressure distribution caused by obtuse obstacles are usually the focuses in Computational Wind Engineer researches (CWE). By solving the non-hydrostatical dynamic equations, PUMA model (Peking ...Flow structure and wind pressure distribution caused by obtuse obstacles are usually the focuses in Computational Wind Engineer researches (CWE). By solving the non-hydrostatical dynamic equations, PUMA model (Peking University Model of Atmospheric Environment) was developed and applied to simulating the flow structure and wind pressure distribution around a tower-shaped building. Evaluation about the wind environment and wind loads around the building was obtained through the analysis of the numerical simulation results and wind tunnel data. Comparisons between the simulation and wind tunnel study indicate that numerical simulation results agree well in the flow field and wind pressure distribution around the tower-shaped building. On the other hand, the horizontal grid interval of 2 m and the vertical grid of 3 m were still too crude to simulate the flow structure and wind pressure distribution on the building surface more exactly in detail; and the absence of suitable pressure perturbation parameterization scheme between the solid and the adjacent space also limits the accuracy of the numerical simulation. The numerical simulation model can be used to evaluate the wind environment and wind load around high buildings.展开更多
In order to investigate the damage and deformation mechanism of large scale steel fixed-roof oil-storage tanks under the combustible gas explosion, a series of explosion experiments of scaled models are conducted. Th...In order to investigate the damage and deformation mechanism of large scale steel fixed-roof oil-storage tanks under the combustible gas explosion, a series of explosion experiments of scaled models are conducted. The l: 25 scaled numerical models of oil-storage tanks with a capacity of 5 000 m3 are also set up by ANSYS/LS-DYNA software, and their damage processes under the blast impact are numerically simulated. Both the experimental results and the numerical simulations show that the blast loading curve displays a pressure jump instantaneously at the moment of contact with the experimental models, and the overpressure peaks at the stagnation area of the outer surface on the blast side. The yield range first appears at the stagnation area and then propagates to the neighboring parts, and the irregular plastic hinge circle obviously appears around the deformation area, which results in the concaved buckling of the tank inner surface. During the whole process, the inner liquid not only impacts on the structures, but also absorbs and consumes part of the blast energy.展开更多
Cavitation erosion is an especially destructive and complex phenomenon. To understand its basic mechanism, the fatigue process of materials during cavitation erosion was investigated by numerical simulation technology...Cavitation erosion is an especially destructive and complex phenomenon. To understand its basic mechanism, the fatigue process of materials during cavitation erosion was investigated by numerical simulation technology. The loading spectrum used was generated by a spark-discharged electrode. Initiation crack life and true stress amplitude was used to explain the cavitation failure period and damage mechanism. The computational results indicated that the components of different materials exhibited various fatigue lives under the same external conditions. When the groove depth was extended, the initiation crack life decreased rapidly, while the true stress amplitude was increased simultaneously. This gave an important explanation to the accelerating material loss rate during cavitation erosion. However, when the groove depth was fixed and the length varied, the fatigue life became complex, more fluctuant than that happened in depth. The results also indicate that the fatigue effect of cavitation plays an important role in contributing to the formation and propagation of characteristic pits.展开更多
Compared with Gaussian wind loads, there is a higher probability of strong suction fluctuations occurrence for non-Gaussian wind pressures. These instantaneous and intermittent fluctuations are the initial cause of lo...Compared with Gaussian wind loads, there is a higher probability of strong suction fluctuations occurrence for non-Gaussian wind pressures. These instantaneous and intermittent fluctuations are the initial cause of local damage to roof structures, par- ticularly at the edges and comers of long-span roofs. Thus, comparative errors would occur if a Gaussian model is used to de- scribe a non-Gaussian wind load, and structural security would not be guaranteed. This paper presents a simplified method based on the inverse fast Fourier transform (IFFT), in which the amplitude spectrum is established via a target power spectrum. Also, the phase spectrum is constructed by introducing the exponential peak generation (EPG) model. Finally, a random pro- cess can be generated via IFFT that meets the specified power spectral density (PSD), skewness and kurtosis. In contrast to a wind tunnel experiment, this method can avoid the coupled relation between the non-Gaussian and the power spectrum char- acteristics, and lead to the desired computational efficiency. Its fitting accuracy is not affected by phase spectrum. Moreover, the fitting precision of the kurtosis and PSD parameters can be guaranteed. In a few cases, the fitting precision of the skewness parameter is fairly poor, but kurtosis is more important than skewness in the description of the non-Gaussian characteristics. Above all, this algorithm is simple and stable and would be an effective method to simulate a non-Gaussian signal.展开更多
文摘The reliability of the numerical K ε model for determining wind pressure on building surfaces is evaluated. The solution algorithm is based on a body fitted non orthogonal curvilinear coordinate system and a staggered grid arrangement. The covariant velocity components are chosen as dependent variables. Convective fluxes are described by the Power Law Scheme. The grids are generated with an elliptic grid generator using control functions. The results compare favorably with those by Oxford wind tunnel measurements.
基金Youth Talent Project of Basic Scientific Research Project of Liaoning Province Education Department(Grant No.LJKZ0270)Youth Project of Basic Scientific Research Project of Liaoning Province Education Department(Grant No.LJKQZ2021055).
文摘In order to study the dynamic and electrical coupling response characteristics of Metal Oxide Semiconductor Controlled Thyristor(MCT)high-voltage switch under the synergic action of mechanical load and high voltage,the separated Hopkinson pressure bar(SHPB)test system was used to simulate different impact load environments,and combined with the multi-layer high-voltage ceramic capacitor charging and discharging system,the instantaneous electrical signals of MCT high-voltage switch were collected.Combined with numerical simulation and theoretical analysis,the failure mode and stress wave propagation characteristics of MCT high voltage switch were determined.The mechanical and electrical coupling response characteristics and failure mechanism of MCT high voltage switch under dynamic load were revealed from macroscopic and microscopic levels.The results show that the damage modes of MCT high-voltage switches can be divided into non-functional damage,recoverable functional damage,non-recoverable damage and structural damage.Due to the gap between the metal gate and the oxide layer,the insulating oxide layer was charged.After placing for a period of time,the elastic deformation of the metal gate partially recovered and the accumulated charge disappeared,which induced the recoverable functional damage failure of the device.In addition,obvious cracks appeared on both sides of the monocrystalline silicon inside the MCT high-voltage switch,leading to unrecoverable damage of the device.
基金Supported by the High-tech Ship Research Project of the Ministry of Industry and Information Technology(Grant No.2019[357]).
文摘This paper aims to reduce the wind resistance of the self-designed offshore tourism platform by optimizing its superstructure,and a transparent shape design is finally suggested.A numerical simulation was performed to calculate the wind load on the platform to test the effect of wind resistance reduction.Two original scale models(sealed and transparent)were established in accordance with the design requirements.The numerical simulation uses the FLUENT software combined with the built-in self-compiled user-defined function(UDF).The stochastic wind was also applied on the basis of the Davenport wind spectrum.The detached eddy simulation(DES)model was used to solve the NS equation.Numerical simulation results show that the wind resistance reduction for the transparent shape model is subtle in the horizontal direction but can effectively reduce the drag force and moment in the vertical direction.Moreover,the force variation of the transparent shape model under different wind attack angles decreases,which reduces the wind load fluctuations.
基金funded by the National Key Research and Development Program of China(No.2020YFC1910000).
文摘Wind energy has emerged as a promising renewable energy source and wind turbine technology has developed rapidly in recent years.Improved wind turbine performance depends heavily on the design and optimization of wind blades.This work offers a critical evaluation of the state of the art in the field of numerical modelling and simulation analysis,which have become crucial for the design and optimization of wind blades.The evaluation of the literature includes considerable research on the application of numerical methods for the structural and aerodynamic performance of wind blades under various operating situations,as well as for analysis and optimization of wind blades.The article illustrates how numerical techniques can be used to analyse wind blade performance and maximize design efficiency.The study of blade performance under various wind conditions has also been made possible through the use of simulation analysis,thus enhancing the efficiency and dependability of wind turbines.Improvements in wind turbine efficiency and dependability,and ultimately the move towards a more sustainable energy future,will be greatly helpful for the development of numerical modelling and simulation techniques.
基金Supported by National Natural Science Foundation of China(Grant Nos.52072156,51675240)Jiangsu Provincial Youth Fund of China(Grant No.KB20160528)+1 种基金Jiangsu Provincial Six Talents Summit Program of China(Grant No.JXQC-011)Jiangsu University Senior Talents Startup Fund(Grant No.1291120046).
文摘The current research of tire aerodynamics mainly focus on the isolated and simplified tread tire.Compared with the real complex pattern tire,the tread pattern structure and deformed profile of a loaded tire has a greatly influence on tire aerodynamic drag.However,the mechanisms of the isolated loaded tires with different tread patterns effects on the aerodynamic drag are subjects worthy of discussion.The purpose of this study is to experimentally and compu-tationally investigate the aerodynamic characteristics of three tires 185/65 R14 with different patterns under loaded.A wind tunnel test model was first established using three-dimensional(3D)printing with a ratio of 1:1,and the pres-sure coefficients C_(p) of the three tires with different patterns are measured.The paper then conducted computational fluid dynamics(CFD)simulations for analyzing the pressure and flow characteristics.The accuracy of CFD simulation is verified by comparing the simulation results with the test results of pressure coefficients C_(p),and they are of good consistency.While,the general analysis of pressure coefficients C_(p) results of the three tires indicates high-pressure area on the windward surface,and occurrence of low-pressure area on the leeward surface,the pressure coefficients C_(p) of all three tires decreased firstly and then increased along in the air flow direction.The authors finally analyzed the effect of tread patterns on the flow field around the tire and revealed the differences between flow characteristics and aerodynamic drag.The results show that,angle of tire lateral groove has great effect on the flow field characteristics such that;the more the angle of lateral groove agrees with the air flow direction,the less the flow separation and flow vortices,and a minimum observable aerodynamic drag.The research provides a guidance for the design of low aerodynamic drag tires,and helps to illustrate the impact of tire aerodynamics on the car body in the future.
基金Project supported by the National Natural Science Foundation of China (Grant No.52131102).
文摘Numerical investigations of floating platforms with different outer column inclined angles under two operating conditions of regular wave and irregular wave are presented in this paper.A coupled aero-hydrodynamic computational fluid dynamics in-house solver FOWT-UALM-SJTU is applied for the calculation.First,the validation for wave and wind generation are conducted to determine mesh distribution strategy.Based on these,the hydrodynamic motion response,aerodynamic performance and wake flow are analyzed to explore the impact of inclined angle.Conduct spectral analysis on the motion response under wave action,discuss the aerodynamic attack angle and inflow wind velocity along the blade spanwise direction in detail,reveal different trends in wake development and recovery.The results show that for the regular wave condition with the increase of inclined angles,the equilibrium position of surge motion is constantly rising,while pitch is decreasing.The maximum root mean square(rms)value occurs at angle=30°,compared with the original OC4 FOWT,the rms in power and thrust increase 0.35%,0.71%.And there are two low regions of attack angle and high regions of axial inflow velocity,corresponding to aerodynamic loads.The spectral analysis indicates that the natural frequency of pitch motion will increase with inclined angle.Besides,from the middle to far region of wake flow,the velocity recovery of FOWT with inclined angle will become faster,which is beneficial for downstream turbines to enhance more wind energy.
文摘In order to explore the internal wind field flow characteristics of T4-72 type centrifugal fan, the three-dimensional model was established based on PRO/E software. Combined with computational fluid Dynamics Software Fluent 6.3, the standard model and SIMPLEC algorithm were used to simulate the wind field inside the fan. Analysis of the flow characteristics, velocity distributed and pressure distributed of the internal fluid model of the T4-72 centrifugal fan, combined with the theoretical formula to obtain the full pressure, power and efficiency performance parameters of the fan. The centrifugal fan performance curve is drawn. While compared with the experimental data, it is found that the internal flow disturbance is strong when the fan is running under low load condition and high load condition, which affects the performance of the fan and reduces the life of the fan. The numerical simulation results are consistent with the experimental results. The overall performance parameters of the fan are in good agreement, verifying the reliability of the simulation results;when the fan works between 1 - 1.4 times the rated flow rate, it can obtain a more stable flow field while maintaining higher efficiency, which provides a new idea for the optimization of the subsequent fan.
基金Projects(51908125,51978155) supported by the National Natural Science Foundation of ChinaProject(W03070080)supported by the National Ten Thousand Talent Program for Young Top-notch Talents,China+1 种基金Project(BK20190359)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(BE2018120) supported by the Key Research and Development Plan of Jiangsu Province,China。
文摘The buffeting performance of kilometer-level high-speed railway suspension bridges has a great impact on the smooth operation of high-speed trains.To investigate the buffeting performance of the structure significantly different from traditional suspension bridges,the first long-span high-speed railway suspension bridge,Wufengshan Yangtze River Bridge(WYRB),is taken as a numerical example to demonstrate the effects of structural parameters and wind field parameters on the buffeting responses.Based on the design information,the spatial finite element model(FEM)of WYRB is established before testing its accuracy.The fluctuating wind fields are simulated via both classical and stochastic wave based spectral representation method(SRM).Finite element method is further taken to analyze the parametric sensitivity on wind induced buffeting responses in time domain.The results show that the vertical displacement is more sensitive to the changing dead load than the lateral and torsional ones.The larger stiffness of the main girder and the lower sag-to-span ratio are both helpful to reduce the buffeting responses.Wind spectrum and coherence function are key influencing factors to the responses so setting proper wind field parameters are essential in the wind-resistant design stage.The analytical results can provide references for wind resistance analysis and selection of structural and fluctuating wind field parameters for similar long-span high-speed railway suspension bridges.
基金NSFC Project (Grant No. 40575069)partly by Zhejiang Science and Technology Foundation (Grant No. KF2006002)
文摘Flow structure and wind pressure distribution caused by obtuse obstacles are usually the focuses in Computational Wind Engineer researches (CWE). By solving the non-hydrostatical dynamic equations, PUMA model (Peking University Model of Atmospheric Environment) was developed and applied to simulating the flow structure and wind pressure distribution around a tower-shaped building. Evaluation about the wind environment and wind loads around the building was obtained through the analysis of the numerical simulation results and wind tunnel data. Comparisons between the simulation and wind tunnel study indicate that numerical simulation results agree well in the flow field and wind pressure distribution around the tower-shaped building. On the other hand, the horizontal grid interval of 2 m and the vertical grid of 3 m were still too crude to simulate the flow structure and wind pressure distribution on the building surface more exactly in detail; and the absence of suitable pressure perturbation parameterization scheme between the solid and the adjacent space also limits the accuracy of the numerical simulation. The numerical simulation model can be used to evaluate the wind environment and wind load around high buildings.
基金The National Natural Science Foundation of China(No. 51078115)
文摘In order to investigate the damage and deformation mechanism of large scale steel fixed-roof oil-storage tanks under the combustible gas explosion, a series of explosion experiments of scaled models are conducted. The l: 25 scaled numerical models of oil-storage tanks with a capacity of 5 000 m3 are also set up by ANSYS/LS-DYNA software, and their damage processes under the blast impact are numerically simulated. Both the experimental results and the numerical simulations show that the blast loading curve displays a pressure jump instantaneously at the moment of contact with the experimental models, and the overpressure peaks at the stagnation area of the outer surface on the blast side. The yield range first appears at the stagnation area and then propagates to the neighboring parts, and the irregular plastic hinge circle obviously appears around the deformation area, which results in the concaved buckling of the tank inner surface. During the whole process, the inner liquid not only impacts on the structures, but also absorbs and consumes part of the blast energy.
基金the National High-Tech Research and Development Program of China(No.2002AA331080)the Beijing Important Science Technology Projects(No.H024200050021).
文摘Cavitation erosion is an especially destructive and complex phenomenon. To understand its basic mechanism, the fatigue process of materials during cavitation erosion was investigated by numerical simulation technology. The loading spectrum used was generated by a spark-discharged electrode. Initiation crack life and true stress amplitude was used to explain the cavitation failure period and damage mechanism. The computational results indicated that the components of different materials exhibited various fatigue lives under the same external conditions. When the groove depth was extended, the initiation crack life decreased rapidly, while the true stress amplitude was increased simultaneously. This gave an important explanation to the accelerating material loss rate during cavitation erosion. However, when the groove depth was fixed and the length varied, the fatigue life became complex, more fluctuant than that happened in depth. The results also indicate that the fatigue effect of cavitation plays an important role in contributing to the formation and propagation of characteristic pits.
基金supported by the National Natural Science Fund for Distinguished Young Scholars (Grant No. 51125031)
文摘Compared with Gaussian wind loads, there is a higher probability of strong suction fluctuations occurrence for non-Gaussian wind pressures. These instantaneous and intermittent fluctuations are the initial cause of local damage to roof structures, par- ticularly at the edges and comers of long-span roofs. Thus, comparative errors would occur if a Gaussian model is used to de- scribe a non-Gaussian wind load, and structural security would not be guaranteed. This paper presents a simplified method based on the inverse fast Fourier transform (IFFT), in which the amplitude spectrum is established via a target power spectrum. Also, the phase spectrum is constructed by introducing the exponential peak generation (EPG) model. Finally, a random pro- cess can be generated via IFFT that meets the specified power spectral density (PSD), skewness and kurtosis. In contrast to a wind tunnel experiment, this method can avoid the coupled relation between the non-Gaussian and the power spectrum char- acteristics, and lead to the desired computational efficiency. Its fitting accuracy is not affected by phase spectrum. Moreover, the fitting precision of the kurtosis and PSD parameters can be guaranteed. In a few cases, the fitting precision of the skewness parameter is fairly poor, but kurtosis is more important than skewness in the description of the non-Gaussian characteristics. Above all, this algorithm is simple and stable and would be an effective method to simulate a non-Gaussian signal.