High-resolution numerical simulation data of a rainstorm triggering debris flow in Sichuan Province of China simulated by the Weather Research and Forecasting (WRF) Model were used to study the dominant cloud microp...High-resolution numerical simulation data of a rainstorm triggering debris flow in Sichuan Province of China simulated by the Weather Research and Forecasting (WRF) Model were used to study the dominant cloud microphysical processes of the torrential rainfall.The results showed that:(1) In the strong precipitation period,particle sizes of all hydrometeors increased,and mean-mass diameters of graupel increased the most significantly,as compared with those in the weak precipitation period; (2) The terminal velocity of raindrops was the strongest among all hydrometeors,followed by graupel's,which was much smaller than that of raindrops.Differences between various hydrometeors' terminal velocities in the strong precipitation period were larger than those in the weak precipitation period,which favored relative motion,collection interaction and transformation between the particles.Absolute terminal velocity values of raindrops and graupel were significantly greater than those of air upward velocity,and the stronger the precipitation was,the greater the differences between them were; (3) The orders of magnitudes of the various hydrometeors' sources and sinks in the strong precipitation period were larger than those in the weak precipitation period,causing a difference in the intensity of precipitation.Water vapor,cloud water,raindrops,graupel and their exchange processes played a major role in the production of the torrential rainfall,and there were two main processes via which raindrops were generated:abundant water vapor condensed into cloud water and,on the one hand,accretion of cloud water by rain water formed rain water,while on the other hand,accretion of cloud water by graupel formed graupel,and then the melting of graupel formed rain water.展开更多
We analyzed cloud microphysical processes' latent heat characteristics and their influence on an autumn heavy rain event over Hainan Island,China,using the mesoscale numerical model WRF and WRF-3DVAR system.We fou...We analyzed cloud microphysical processes' latent heat characteristics and their influence on an autumn heavy rain event over Hainan Island,China,using the mesoscale numerical model WRF and WRF-3DVAR system.We found that positive latent heat occurred far above the zero layer,while negative latent heat occurred mainly under the zero layer.There was substantially more positive latent heat than negative latent heat,and the condensation heating had the most important contribution to the latent heat increase.The processes of deposition,congelation,melting and evaporation were all characterized by weakening after their intensification;however,the variations in condensation and sublimation processes were relatively small.The main cloud microphysical processes for positive latent heat were condensation of water vapor into cloud water,the condensation of rain,and the deposition increase of cloud ice,snow and graupel.The main cloud microphysical processes for negative latent heat were the evaporation of rain,the melting and enhanced melting of graupel.The latent heat releases due to different cloud microphysical processes have a significant impact on the intensity of precipitation.Without the condensation and evaporation of rain,the total latent heating would decrease and the moisture variables and precipitation would reduce significantly.Without deposition and sublimation,the heating in high levels would decrease and the precipitation would reduce.Without congelation and melting,the latent heating would enhance in the low levels,and the precipitation would reduce.展开更多
High-resolution data of a torrential rainfall event in Sichuan, China, simulated by the WRF model, were used to analyze the cloud microphysical differences with precipitation intensity. Sixhourly accumulated rainfall ...High-resolution data of a torrential rainfall event in Sichuan, China, simulated by the WRF model, were used to analyze the cloud microphysical differences with precipitation intensity. Sixhourly accumulated rainfall was classified into five bins based on rainfall intensity, and the cloud microphysical characteristics and processes in different bins were studied. The results show that:(1) Hydrometeor content differed distinctly among different bins. Mixing ratios of cloud water, rain water, and graupel enhanced significantly and monotonously with increasing rainfall intensity. With increasing precipitation intensity, the monotonous increase in cloud water number concentration was significant. Meanwhile, number concentrations of rain water and graupel increased at first and then decreased or increased slowly in larger rainfall bins.(2) With precipitation intensity increasing, cloud microphysical conversion processes closely related to the production of rainwater, directly(accretion of cloud water by rain(QCLcr) and melting of graupel(QMLgr)) or indirectly(water vapor condensation and accretion of cloud water by graupel), increased significantly.(3) As the two main sources of rainwater, QCLcrincreased monotonously with increasing precipitation intensity, while QMLgr increased slowly, even tending to cease increasing in larger rainfall bins.展开更多
A shower cloud observed in Jiangxi,a hailstorm observed in Hebei and“75.8”torrential rain in Henan are simulated with our microphysical model in a one-dimensional framework.The model,using the radio- sonde data as i...A shower cloud observed in Jiangxi,a hailstorm observed in Hebei and“75.8”torrential rain in Henan are simulated with our microphysical model in a one-dimensional framework.The model,using the radio- sonde data as input,gets its output which shows agreement in many aspects as compared with observations in each case.The glaciation of small cumulus cloud,low precipitation efficiency of hailstorm and the per- sistence of torrential rain are demonstrated.It is also shown that the Bergeron process has little influence, but the warm-rain process plays an important role in the formation of precipitation in cumulonimbus with a warm cloud base.展开更多
利用耦合Morrision双参数物理方案的WRF(Weather Research and Forecasting)中尺度数值模式,对发生在2007年6月13日山西地区的一次强降水过程进行了模拟,并对清洁和污染背景下气溶胶对云微物理结构和降水变化的影响进行了敏感性试验和...利用耦合Morrision双参数物理方案的WRF(Weather Research and Forecasting)中尺度数值模式,对发生在2007年6月13日山西地区的一次强降水过程进行了模拟,并对清洁和污染背景下气溶胶对云微物理结构和降水变化的影响进行了敏感性试验和对比分析。结果显示:污染背景下,降水区域没有明显变化,中心强度变强,网格平均降水量比清洁背景少0.8%;雪和霰是雨水的主要来源,高浓度气溶胶背景下,前期暖云降水减弱,后期大量雪粒子与云中云滴和雨滴碰并增长,造成降水增强。展开更多
利用WRF(ARW)V3.6模式模拟了2010年10月5—6日发生在海南的一次秋季大暴雨过程,从降水、风场、反射率和云结构等方面分析WRF模式中3个积云参数化方案(KF,BMJ,Tied Tke)和4个微物理参数化方案(Lin et al,WSM5,WSM6,Thompson)对海南岛秋...利用WRF(ARW)V3.6模式模拟了2010年10月5—6日发生在海南的一次秋季大暴雨过程,从降水、风场、反射率和云结构等方面分析WRF模式中3个积云参数化方案(KF,BMJ,Tied Tke)和4个微物理参数化方案(Lin et al,WSM5,WSM6,Thompson)对海南岛秋季暴雨模拟的影响。结果表明:此次秋季暴雨过程模拟对不同的积云参数化方案和微物理参数化方案组合是比较敏感的,不同的积云参数化方案和微物理参数化方案组合通过调整温湿场结构,从而影响模拟降水的时间、强度和落区。对比发现,Thompson微物理方案的组合对于降水量级的模拟更为敏感,能较合理的描述暴雨发生发展过程中的水汽输送、热力和动力条件,并通过影响雨水混合比和云水混合比的高度和大小从而影响降水。其中Thompson微物理方案和Tied Tke积云方案的组合能较好的模拟出本次暴雨过程的特征,与实测最为接近,该组合模拟的最大垂直速度和反射率区与最大云水混合比对应。另外,积云方案和微物理方案的选择不影响水汽混合比的模拟。展开更多
基金supported by the Key Research Program of the Chinese Academy of Sciences (Grant No. KZZD-EW-05-01)the National Basic Research Program of China (973 Program) (Grant No. 2014CB441402)
文摘High-resolution numerical simulation data of a rainstorm triggering debris flow in Sichuan Province of China simulated by the Weather Research and Forecasting (WRF) Model were used to study the dominant cloud microphysical processes of the torrential rainfall.The results showed that:(1) In the strong precipitation period,particle sizes of all hydrometeors increased,and mean-mass diameters of graupel increased the most significantly,as compared with those in the weak precipitation period; (2) The terminal velocity of raindrops was the strongest among all hydrometeors,followed by graupel's,which was much smaller than that of raindrops.Differences between various hydrometeors' terminal velocities in the strong precipitation period were larger than those in the weak precipitation period,which favored relative motion,collection interaction and transformation between the particles.Absolute terminal velocity values of raindrops and graupel were significantly greater than those of air upward velocity,and the stronger the precipitation was,the greater the differences between them were; (3) The orders of magnitudes of the various hydrometeors' sources and sinks in the strong precipitation period were larger than those in the weak precipitation period,causing a difference in the intensity of precipitation.Water vapor,cloud water,raindrops,graupel and their exchange processes played a major role in the production of the torrential rainfall,and there were two main processes via which raindrops were generated:abundant water vapor condensed into cloud water and,on the one hand,accretion of cloud water by rain water formed rain water,while on the other hand,accretion of cloud water by graupel formed graupel,and then the melting of graupel formed rain water.
基金National Natural Science Foundation of China(41275060)National Natural Science Foundation of China(41275145)+1 种基金National Key Basic Research Program of China(2014CB953903)Fundamental Research Funds for the Central Universities(131gjc03)
文摘We analyzed cloud microphysical processes' latent heat characteristics and their influence on an autumn heavy rain event over Hainan Island,China,using the mesoscale numerical model WRF and WRF-3DVAR system.We found that positive latent heat occurred far above the zero layer,while negative latent heat occurred mainly under the zero layer.There was substantially more positive latent heat than negative latent heat,and the condensation heating had the most important contribution to the latent heat increase.The processes of deposition,congelation,melting and evaporation were all characterized by weakening after their intensification;however,the variations in condensation and sublimation processes were relatively small.The main cloud microphysical processes for positive latent heat were condensation of water vapor into cloud water,the condensation of rain,and the deposition increase of cloud ice,snow and graupel.The main cloud microphysical processes for negative latent heat were the evaporation of rain,the melting and enhanced melting of graupel.The latent heat releases due to different cloud microphysical processes have a significant impact on the intensity of precipitation.Without the condensation and evaporation of rain,the total latent heating would decrease and the moisture variables and precipitation would reduce significantly.Without deposition and sublimation,the heating in high levels would decrease and the precipitation would reduce.Without congelation and melting,the latent heating would enhance in the low levels,and the precipitation would reduce.
基金supported by the Key Research Program of the Chinese Academy of Sciences[grant number KZZD-e W-05-01]the National Basic Research Program of China[973 Program,grant number 2014CB441402]
文摘High-resolution data of a torrential rainfall event in Sichuan, China, simulated by the WRF model, were used to analyze the cloud microphysical differences with precipitation intensity. Sixhourly accumulated rainfall was classified into five bins based on rainfall intensity, and the cloud microphysical characteristics and processes in different bins were studied. The results show that:(1) Hydrometeor content differed distinctly among different bins. Mixing ratios of cloud water, rain water, and graupel enhanced significantly and monotonously with increasing rainfall intensity. With increasing precipitation intensity, the monotonous increase in cloud water number concentration was significant. Meanwhile, number concentrations of rain water and graupel increased at first and then decreased or increased slowly in larger rainfall bins.(2) With precipitation intensity increasing, cloud microphysical conversion processes closely related to the production of rainwater, directly(accretion of cloud water by rain(QCLcr) and melting of graupel(QMLgr)) or indirectly(water vapor condensation and accretion of cloud water by graupel), increased significantly.(3) As the two main sources of rainwater, QCLcrincreased monotonously with increasing precipitation intensity, while QMLgr increased slowly, even tending to cease increasing in larger rainfall bins.
文摘A shower cloud observed in Jiangxi,a hailstorm observed in Hebei and“75.8”torrential rain in Henan are simulated with our microphysical model in a one-dimensional framework.The model,using the radio- sonde data as input,gets its output which shows agreement in many aspects as compared with observations in each case.The glaciation of small cumulus cloud,low precipitation efficiency of hailstorm and the per- sistence of torrential rain are demonstrated.It is also shown that the Bergeron process has little influence, but the warm-rain process plays an important role in the formation of precipitation in cumulonimbus with a warm cloud base.
文摘利用耦合Morrision双参数物理方案的WRF(Weather Research and Forecasting)中尺度数值模式,对发生在2007年6月13日山西地区的一次强降水过程进行了模拟,并对清洁和污染背景下气溶胶对云微物理结构和降水变化的影响进行了敏感性试验和对比分析。结果显示:污染背景下,降水区域没有明显变化,中心强度变强,网格平均降水量比清洁背景少0.8%;雪和霰是雨水的主要来源,高浓度气溶胶背景下,前期暖云降水减弱,后期大量雪粒子与云中云滴和雨滴碰并增长,造成降水增强。
文摘利用WRF(ARW)V3.6模式模拟了2010年10月5—6日发生在海南的一次秋季大暴雨过程,从降水、风场、反射率和云结构等方面分析WRF模式中3个积云参数化方案(KF,BMJ,Tied Tke)和4个微物理参数化方案(Lin et al,WSM5,WSM6,Thompson)对海南岛秋季暴雨模拟的影响。结果表明:此次秋季暴雨过程模拟对不同的积云参数化方案和微物理参数化方案组合是比较敏感的,不同的积云参数化方案和微物理参数化方案组合通过调整温湿场结构,从而影响模拟降水的时间、强度和落区。对比发现,Thompson微物理方案的组合对于降水量级的模拟更为敏感,能较合理的描述暴雨发生发展过程中的水汽输送、热力和动力条件,并通过影响雨水混合比和云水混合比的高度和大小从而影响降水。其中Thompson微物理方案和Tied Tke积云方案的组合能较好的模拟出本次暴雨过程的特征,与实测最为接近,该组合模拟的最大垂直速度和反射率区与最大云水混合比对应。另外,积云方案和微物理方案的选择不影响水汽混合比的模拟。