期刊文献+
共找到542篇文章
< 1 2 28 >
每页显示 20 50 100
Numerical simulation study on the mold strength of magnetic mold casting based on a coupled electromagnetic-structural method
1
作者 Wei-li Peng Jian-hua Zhao +1 位作者 Cheng Gu Ya-jun Wang 《China Foundry》 SCIE EI CAS CSCD 2024年第5期577-587,共11页
The properties of the magnetic mold in magnetic mold casting directly determine the quality of the final cast parts.In this study,the magnetic mold properties in magnetic mold casting,were studied utilizing a coupled ... The properties of the magnetic mold in magnetic mold casting directly determine the quality of the final cast parts.In this study,the magnetic mold properties in magnetic mold casting,were studied utilizing a coupled electromagnetic-structural method through numerical simulation.This study investigated key factors including equivalent stress,the distribution of tensile and compressive stresses,and the area ratio of tensile stress.It compared molds made entirely of magnetic materials with those made partially of magnetic materials.Simulation results indicate that as current increases from 4 A to 8 A,both the initial magnetic mold and the material-replaced magnetic mold initially show an increasing trend in equivalent stress,tensile-compressive stress,and the area ratio of tensile stress,peaking at 6 A before declining.After material replacement,the area ratio of tensile stress at 6 A decreases to 19.84%,representing a reduction of 29.72%.Magnetic molds comprising a combination of magnetic and non-magnetic materials exhibit sufficient strength and a reduced area ratio of tensile stress compared to those made entirely from magnetic materials.This study provides valuable insights for optimizing magnetic mold casting processes and offers practical guidance for advancing the application of magnetic molds. 展开更多
关键词 magnetic mold casting coupled electromagnetic-structural method numerical simulation stress analysis
下载PDF
Stress initialization methods for dynamic numerical simulation of rock mass with high in-situ stress 被引量:20
2
作者 YANG Jia-cai LIU Ke-wei +1 位作者 LI Xu-dong LIU Zhi-xiang 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第10期3149-3162,共14页
In the context of deep rock engineering,the in-situ stress state is of major importance as it plays an important role in rock dynamic response behavior.Thus,stress initialization becomes crucial and is the first step ... In the context of deep rock engineering,the in-situ stress state is of major importance as it plays an important role in rock dynamic response behavior.Thus,stress initialization becomes crucial and is the first step for the dynamic response simulation of rock mass in a high in-situ stress field.In this paper,stress initialization methods,including their principles and operating procedures for reproducing steady in-situ stress state in LS-DYNA,are first introduced.Then the most popular four methods,i.e.,explicit dynamic relaxation(DR)method,implicit-explicit sequence method,Dynain file method and quasi-static method,are exemplified through a case analysis by using the RHT and plastic hardening rock material models to simulate rock blasting under in-situ stress condition.Based on the simulations,it is concluded that the stress initialization results obtained by implicit-explicit sequence method and dynain file method are closely related to the rock material model,and the explicit DR method has an obvious advantage in solution time when compared to other methods.Besides that,it is recommended to adopt two separate analyses for the whole numerical simulation of rock mass under the combined action of in-situ stress and dynamic disturbance. 展开更多
关键词 in-situ stress stress initialization method dynamic disturbance numerical simulation rock mass
下载PDF
Numerical simulation on residual stress and deformation for WAAM parts of aluminum alloy based on temperature function method 被引量:2
3
作者 Jia Jinlong Zhao Yue +2 位作者 Dong Mingye Wu Aiping Li Quan 《China Welding》 EI CAS 2020年第2期1-8,共8页
Wire arc additive manufacture(WAAM) is a new technique to fabricate large-scale complex aluminum alloy components.However, the performance of the parts is critically influenced by residual stresses and deformation. A ... Wire arc additive manufacture(WAAM) is a new technique to fabricate large-scale complex aluminum alloy components.However, the performance of the parts is critically influenced by residual stresses and deformation. A sequentially thermal-mechanical coupled model of residual stress and deformation for aluminum alloy WAAM parts was established based on commercial FE software ABAQUS. The temperature field was calculated by the moving heat source(MHS) method. The temperature function was obtained according to the distribution of the peak temperature. Furthermore, the MHS method and segmented temperature function(STF) method were used to calculate the residual stress and deformation. The results show that the STF method satisfies both the efficiency and accuracy requirements. 1-segment, 3-segment, and 5-segment STF methods can shorten the time for mechanical analysis by 91%, 79%, 63%, respectively.The error of the residual stress and deformation are all less than 20%. STF method provides an effective way to predict the residual stress and deformation of large-scale WAAM parts. 展开更多
关键词 wire ARC ADDITIVE MANUFACTURE numerical simulation RESIDUAL stress and deformation TEMPERATURE function method
下载PDF
Techniques for improving computational speed in numerical simulation of casting thermal stress based on finite difference method
4
作者 Xue Xiang Wang Yueping 《China Foundry》 SCIE CAS 2013年第2期81-86,共6页
Finite difference method (FDM) was applied to simulate thermal stress recently, which normally needs a long computational time and big computer storage. This study presents two techniques for improving computational s... Finite difference method (FDM) was applied to simulate thermal stress recently, which normally needs a long computational time and big computer storage. This study presents two techniques for improving computational speed in numerical simulation of casting thermal stress based on FDM, one for handling of nonconstant material properties and the other for dealing with the various coefficients in discretization equations. The use of the two techniques has been discussed and an application in wave-guide casting is given. The results show that the computational speed is almost tripled and the computer storage needed is reduced nearly half compared with those of the original method without the new technologies. The stress results for the casting domain obtained by both methods that set the temperature steps to 0.1 ℃ and 10 ℃, respectively are nearly the same and in good agreement with actual casting situation. It can be concluded that both handling the material properties as an assumption of stepwise profile and eliminating the repeated calculation are reliable and effective to improve computational speed, and applicable in heat transfer and fluid flow simulation. 展开更多
关键词 computational speed numerical simulation thermal stress finite difference method material properties
下载PDF
COUPLED NUMERICAL SIMULATION ON COLD ROLLER'S TEMPERATURE FIFLD-PHASE TRANSFORMATION - STRESS FIELD DURING ITS QUENCHING PSOCESS 被引量:14
5
作者 J. F. Gu J. S. Pan M. J. Hu and F. F. Shen (School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第1期254-262,共9页
Complicated changns occur inside the steel parts during quenching process. The abruptly changed boundary conditions make the temperature field,micro - structure and stress field change dramatically in very short ti... Complicated changns occur inside the steel parts during quenching process. The abruptly changed boundary conditions make the temperature field,micro - structure and stress field change dramatically in very short time, and these variables take a contact interactions in the whole process. In this paper, a three dimensional non - linear mathematical model for queeching process has been founded and the numerical simulation on temperature field,microstructre and stress field has been realized.In the FEM analysis, the incremental iteration method is used to deal with such complicated nonlinear as boundary nonlinear, physical property nonlinear,transformation nonlinear etc.The effect of stress on transformation kinetics has been considered in the calculation of microstructure. In the stress field anal- ysis,a thermo- elasto - plastic model has been founded, which considers such factors as transforma- tion strain,transformation plastic strain, themal strain and the effect of temperature and transforma- tion on mechanical propertier etc. The transient temperature field, microstructure distribution and stress field of the roller on any time can be displayed vividly,and the cooling curve and the changes of stress on any position can also be given. 展开更多
关键词 quenching phase transformation temperature field stress field finite element method (FEM) numerical simulation
下载PDF
NUMERICAL SIMULATION OF STRESS-STRAIN DISTRIBUTIONS FOR WELD METAL SOLIDIFICATION CRACKING IN STAINLESS STEEL 被引量:2
6
作者 Y. H. Wei R. P. Liu and Z. J. Dong( 1) National Key Laboratory of Advanced Welding Production Technology, HIT, Harbin 150001, China 2) Harbin Research institute of Welding,Harbin 150080, China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第1期133-138,共6页
This paper analyzed the characteristics of welding solidification crack of stainless steels,and clearly re- vealed the the of the deformation in the molten - the pool and the solidification shrinkage on the stress -... This paper analyzed the characteristics of welding solidification crack of stainless steels,and clearly re- vealed the the of the deformation in the molten - the pool and the solidification shrinkage on the stress - strain fields in the trail of molten - weld pool.Moreover, rheologic properties of the alloys in solid - liquid zone were also obtained by measuring the hading and unloading deform curves of the steels.As a result, a numerical model for simulation of stress - strain distributions of welding solidifi- cation crack was developed. On the basis of the model,the thesis simulated the driving force of solidifi- cation crack of stainless steels, that is, stress - strain fields in the trail of molten-weld pool with fi- nite element method. 展开更多
关键词 welding solidification crack welding solidification crack driving force finite element method stress - strain field numerical simulation
下载PDF
Numerical simulation of the stress-strain curve and the stress and strain distributions of the titanium-duplex alloy 被引量:2
7
作者 ZHAO Xiqinga ZANG Xinliang +2 位作者 WANG Qingfeng Park Joongkeun YANG Qingxiang 《Rare Metals》 SCIE EI CAS CSCD 2008年第5期463-467,共5页
The stress-strain curve of an α-β Ti-8Mn alloy was measured and then it was calculated with finite element method (FEM) based on the stress-strain curves of the single α and β phase alloys. By comparing the calc... The stress-strain curve of an α-β Ti-8Mn alloy was measured and then it was calculated with finite element method (FEM) based on the stress-strain curves of the single α and β phase alloys. By comparing the calculated stress-strain curve with the measured one, it can be seen that they fit each other very well. Thus, the FE model built in this work is effective. According to the above mentioned model, the distributions of stress and strain in the α and β phases were simulated. The results show that the stress gradients exist in both α and β phases, and the distributions of stress are inhomogeneous. The stress inside the phase is generally higher than that near the interface. Meanwhile, the stress in the α phase is lower than that in the β phase, whereas the strain in the α phase is higher than that in the β phase. 展开更多
关键词 titanium alloy stress-strain curve numerical simulation finite element method
下载PDF
Estimation of the three-dimensional in situ stress field around a large deep underground cavern group near a valley 被引量:10
8
作者 Dingping Xu Xiang Huang +7 位作者 Quan Jiang Shaojun Li Hong Zheng Shili Qiu Huaisheng Xu Yonghong Li Zhiguo Li Xingdong Ma 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第3期529-544,共16页
Understanding three-dimensional(3D)in situ stress field is of key importance for estimating the stability of large deep underground cavern groups near valleys.However,the complete 3D in situ stress fields around large... Understanding three-dimensional(3D)in situ stress field is of key importance for estimating the stability of large deep underground cavern groups near valleys.However,the complete 3D in situ stress fields around large deep underground cavern groups are difficult to determine based on in situ stress data from a limited number of measuring points due to the insufficient representativeness and unreliability of such measurements.In this study,an integrated approach for estimating the 3D in situ stress field around a large deep underground cavern group near a valley is developed based on incomplete in situ stress measurements and the stress-induced failures of tunnels excavated prior to the step excavation of the cavern group.This integrated approach is implemented via four interrelated and progressive basic steps,i.e.inference of the regional tectonic stress field direction,analyses of in situ stress characteristics and measurement reliability,regression-based in situ stress field analysis and reliability assessment,and modified in situ stress field analysis and reliability verification.The orientations and magnitudes of the 3D in situ stress field can be analyzed and obtained at a strategic level following these four basic steps.First,the tectonic stress field direction around the cavern group is deduced in accordance with the regional tectonic framework and verified using a regional crustal deformation velocity map.Second,the reliability of the in situ stress measurements is verified based on the locations and depths of stressinduced brittle failures in small tunnels(such as exploratory tunnels and pilot tunnels)within the excavation range of the cavern group.Third,considering the influences of the valley topography and major geological structures,the 3D in situ stress field is regressed using numerical simulation and multiple linear regression techniques based on the in situ stress measurements.Finally,the regressed in situ stress field is further modified and reverified based on the stress-induced brittle failures of small tunnels and the initial excavation of the cavern group.A case study of the Shuangjiangkou underground cavern group demonstrates that the proposed approach is reliable for estimating the 3D in situ stress fields of large deep underground cavern groups near valleys,thus contributing to the optimization of practical excavation and design of mitigating the instability of the surrounding rock masses during step excavations. 展开更多
关键词 Underground cavern group in situ stress stress-induced brittle failure Spalling depth numerical simulation
下载PDF
Using finite difference method to simulate casting thermal stress 被引量:6
9
作者 Liao Dunming Zhang Bin +2 位作者 Zhou Jianxin Liu Ruixiang Chen Liliang 《China Foundry》 SCIE CAS 2011年第2期177-181,共5页
Thermal stress simulation can provide a scientific reference to eliminate defects such as crack,residual stress centralization and deformation etc.,caused by thermal stress during casting solidification.To study the t... Thermal stress simulation can provide a scientific reference to eliminate defects such as crack,residual stress centralization and deformation etc.,caused by thermal stress during casting solidification.To study the thermal stress distribution during casting process,a unilateral thermal-stress coupling model was employed to simulate 3D casting stress using Finite Difference Method(FDM),namely all the traditional thermal-elastic-plastic equations are numerically and differentially discrete.A FDM/FDM numerical simulation system was developed to analyze temperature and stress fields during casting solidification process.Two practical verifications were carried out,and the results from simulation basically coincided with practical cases.The results indicated that the FDM/FDM stress simulation system can be used to simulate the formation of residual stress,and to predict the occurrence of hot tearing.Because heat transfer and stress analysis are all based on FDM,they can use the same FD model,which can avoid the matching process between different models,and hence reduce temperature-load transferring errors.This approach makes the simulation of fluid flow,heat transfer and stress analysis unify into one single model. 展开更多
关键词 thermal stress numerical simulation finite difference method (FDM) casting solidification process
下载PDF
Effects of in-situ stress on the stability of a roadway excavated through a coal seam 被引量:8
10
作者 Li He Lin Baiquan +5 位作者 Hong Yidu Gao Yabin Yang Wei Liu Tong, Wang Rui Huang Zhanbo 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第6期917-927,共11页
Roadways excavated through a coal seam can exert an adverse effect on roadway stability. To investigate the effects of in-situ stress on roadway stability, numerical models were built and high horizontal stresses at v... Roadways excavated through a coal seam can exert an adverse effect on roadway stability. To investigate the effects of in-situ stress on roadway stability, numerical models were built and high horizontal stresses at varying orientations were applied. The results indicate that stress concentrations, roadway deformation and failure increase in magnitude and extent as the excavation angle with respect to the maximum horizontal stress increases. In addition, the stress adjacent to the coal-rock interface sharply varies in space and evolves with time; coal is much more vulnerable to deformation and failure than rock.The results provide insights into the layout of roadways excavated through a coal seam. Roadways should be designed parallel or at a narrow angle to the maximum horizontal stress. The concentrated stress at the top corner of the face-end should be reduced in advance, and the coal seam should be reinforced immediately after excavation. 展开更多
关键词 ROADWAY stability numerical simulation in-situ stress stress CONCENTRATION Failure Deformation
下载PDF
Thermal stress analysis method considering geometric effect of risers in sand mold casting process 被引量:1
11
作者 S.Y.Kwak H.Y.Hwang C.Cho 《China Foundry》 SCIE CAS 2014年第6期531-536,共6页
Solidif ication and f luid f low analysis using computer simulation is a current common practice. There is also a high demand for thermal stress analysis in the casting process because casting engineers want to contro... Solidif ication and f luid f low analysis using computer simulation is a current common practice. There is also a high demand for thermal stress analysis in the casting process because casting engineers want to control the defects related to thermal stresses, such as large deformation and crack generation during casting. The riser system is an essential part of preventing the shrinkage defects in the casting process, and it has a great inf luence on thermal phenomena. The analysis domain is dramatically expanded by attaching the riser system to a casting product due to its large volume, and it makes FEM mesh generation diff icult. However, it is diff icult to study and solve the above proposed problem caused by riser system using traditional analysis methods which use single numerical method such as FEM or FDM. In this paper, some research information is presented on the effects of the riser system on thermal stress analysis using a FDM/FEM hybrid method in the casting process simulation. The results show the optimal conditions for stress analysis of the riser model in order to save computation time and memory resources. 展开更多
关键词 thermal stress sand mold casting RISER numerical analysis hybrid method simulation
下载PDF
Three dimensional tectonic stress field in North China 被引量:6
12
作者 陈连旺 陆远忠 +2 位作者 张杰 许桂林 郭若眉 《Acta Seismologica Sinica(English Edition)》 CSCD 1999年第2期155-164,共10页
According to the latest data of geological structure, geophysics, in-situ stress measurement and focal mechanism,3-D tectonic stress field model in North China is built and 3-D tectonic stress field pattern of North C... According to the latest data of geological structure, geophysics, in-situ stress measurement and focal mechanism,3-D tectonic stress field model in North China is built and 3-D tectonic stress field pattern of North China aresimulated by finite element method. Then the overall characteristics and regional specific feature of North Chinaare studied. Finally, the influences of the valid dynamic boundary conditions of North China Block, active faultsand the inhomogeneity of crustal medium on tectonic stress field of North China are investigated. 展开更多
关键词 North China tectonic stress field three dimensional pattern numerical simulation by finite element method
下载PDF
Analysis of Three-dimensional Crack Propagation by Using Displacement Discontinuity Method 被引量:3
13
作者 王飞 黄醒春 《Journal of Donghua University(English Edition)》 EI CAS 2010年第6期835-840,共6页
A technique for modelling of three-dimensional(3D)quasi-statically propagating cracks in elastic bodies by the displacement discontinuity method(DDM)was described.When the crack is closed,the Mohr-coulomb rule on the ... A technique for modelling of three-dimensional(3D)quasi-statically propagating cracks in elastic bodies by the displacement discontinuity method(DDM)was described.When the crack is closed,the Mohr-coulomb rule on the two contacted surfaces of the crack must be satisfied.A simple iterative method was adopted in order to consider three different states of cracks.Under the assumption that the advance of the point on the crack front would occur only in the normal plane which is through this edge point,the maximum energy release rate criterion is modified to be used as the criterion for the crack growth.With discretization,the process of crack propagation can be seen as the advance of the vertices of the crack front.The program MCP3D was developed based on these theories to simulate the 3D quasi-static crack propagation.A numerical example of a penny-shaped crack subject to tension and compression in an infinite elastic media was analyzed with MCP3D,and the results in comparison with others' show that the present method for 3D crack propagation is effective. 展开更多
关键词 three-dimensional(3D)crack propagation displacement discontinuity method stress intensity factor(SIF) numerical simulation
下载PDF
Using true‑triaxial stress path to simulate excavation‑induced rock damage:a case study 被引量:1
14
作者 Qingsheng Bai Cun Zhang R.Paul Young 《International Journal of Coal Science & Technology》 EI CAS CSCD 2022年第4期165-180,共16页
This study presents an example illustrating the role of in situ 3D stress path method in simulating the roof damage development observed in the Mine-by tunnel at Underground Research Laboratory(URL)located in Manitoba... This study presents an example illustrating the role of in situ 3D stress path method in simulating the roof damage development observed in the Mine-by tunnel at Underground Research Laboratory(URL)located in Manitoba,Canada.The 3D stress path,at the point 1 cm in the crown of the Mine-by tunnel,was applied to a cubic Lac du Bonnet(LdB)granite sample to further understand the roof damage process and the associated seismicity.After careful calibrations,a numerical model was used to reproduce the experiment,which produced similar seismicity processes and source mechanisms.Acoustic emission(AE)events obtained from laboratory and numerical modeling were converted to locations in relation to the tunnel face and were compared to the feld microseismicity(MS)occurring in the upper notch region of the Mine-by tunnel.The crack development and damage mechanism are carefully illustrated.The diference between tests and feld monitoring was discussed.The intermediate principal stress(σ_(2))unloading process was carried out in numerical simulation to investigate its role in rock damage development.The results clearly showedσ_(2)could play a signifcant role both in damage development and failure mode.It should be considered when predicting the damage region in underground excavations.This study highlights the potential role of laboratory and numerical stress path tests to investigate fracture processes and mechanisms occurring during engineering activities such as tunnel excavation. 展开更多
关键词 Acoustic emission Damage development in situ 3D stress path numerical simulation True-triaxial experiment
下载PDF
DEVELOPING LAW OF WATER-CONDUCTING FISSURE ZONE AND STRESS VARIATION
15
作者 Xu Guoyuan Gu Desheng Chen Shouru(Department of Resources Exploitation Engineering,Central South University of Technology,Changsha 410083) 《中国有色金属学会会刊:英文版》 EI CSCD 1995年第4期18-21,共4页
DEVELOPINGLAWOFWATER-CONDUCTINGFISSUREZONEANDSTRESSVARIATIONXuGuoyuan;GuDesheng;ChenShouru(DepartmentofResou... DEVELOPINGLAWOFWATER-CONDUCTINGFISSUREZONEANDSTRESSVARIATIONXuGuoyuan;GuDesheng;ChenShouru(DepartmentofResourcesExploitationE... 展开更多
关键词 BACKFILLinG method numerical simulation stress state water-condlucting FISSURE ZONE
下载PDF
准噶尔盆地齐古背斜深浅层泥岩裂缝发育差异性及其制约下油气保存条件 被引量:1
16
作者 吴伟 周永 +4 位作者 冯阵东 鲁雪松 卓勤功 刘惟庆 王光绪 《河南理工大学学报(自然科学版)》 CAS 北大核心 2024年第2期49-56,共8页
前陆冲断带油气资源丰富,但复杂构造作用下盖层封闭能力的差异阻碍油气勘探进程。目的针对准噶尔盆地南缘冲断带地表油气泄露严重且勘探不足的问题,方法以齐古背斜深浅泥岩盖层为研究对象,在明确地层模型的基础上,结合测井资料反演与实... 前陆冲断带油气资源丰富,但复杂构造作用下盖层封闭能力的差异阻碍油气勘探进程。目的针对准噶尔盆地南缘冲断带地表油气泄露严重且勘探不足的问题,方法以齐古背斜深浅泥岩盖层为研究对象,在明确地层模型的基础上,结合测井资料反演与实测数据,构建研究区力学参数数值模型,运用有限元方法对齐古背斜古、今构造应力场进行模拟,并将获取的应力场数据与裂缝参数理论相结合,分析盖层的裂缝形成时期,计算现今应力场对盖层裂缝的改造结果。结果结果表明:齐古背斜古、今应力分布受控于埋深、构造位置、断裂走向和断裂汇聚位置;现今应力场下,齐古背斜浅部盖层不易破裂,只对古构造应力场形成的裂缝起改造作用;深浅盖层裂缝发育程度差异大,背斜高点裂缝发育可能是造成浅部油气泄漏的主要原因;裂缝带在断层附近更发育,断层带附近裂缝渗透率远大于正常地层的,可能为深部油气向浅层运移甚至散失提供通道;深部盖层相对稳定,盖层条件不是制约准南下组合勘探成败的关键因素。结论研究结果可为准噶尔盆地南缘冲断带深部油气勘探提供一定参考。 展开更多
关键词 地应力 裂缝预测 盖层评价 数值模拟 侏罗系 齐古背斜
下载PDF
煤层顶板间接压裂裂缝扩展机制及影响因素 被引量:1
17
作者 李勇 陈涛 +1 位作者 马啸天 吴翔 《煤炭科学技术》 EI CAS CSCD 北大核心 2024年第2期171-182,共12页
碎软低渗煤层在我国普遍发育,制约煤层气单井产气量提高和产业发展。间接压裂是通过在邻近层产生垂直裂缝沟通煤层进而实现煤层有效改造的一种压裂方式,可以有效应对钻井塌陷、煤粉产出、压裂液滤失和煤层厚度薄等不利因素。通过间接压... 碎软低渗煤层在我国普遍发育,制约煤层气单井产气量提高和产业发展。间接压裂是通过在邻近层产生垂直裂缝沟通煤层进而实现煤层有效改造的一种压裂方式,可以有效应对钻井塌陷、煤粉产出、压裂液滤失和煤层厚度薄等不利因素。通过间接压裂物理模拟试验和扩展有限元数值模拟分析,揭示煤层顶板间接压裂裂缝扩展影响因素,明确裂缝扩展机制,以期为间接压裂技术提供指导。通过直接压裂煤层和不同起裂位置、垂向应力和施工排量影响下间接压裂试验表明,起裂压力高,更易产生长裂缝,且受原生裂缝影响程度减小;但起裂点距离煤层越远,起裂所需能量越大,高破裂压力会对煤层造成粉碎性破坏;大施工排量下,起裂压力对应升高,起裂时间变短,原生裂缝影响程度变小。考虑地应力、起裂位置、岩石力学和施工排量等参数的数值模拟结果显示,在模型参数设置条件下,最大水平主应力和垂向应力差在<4 MPa,煤层与顶板有效应力差>3 MPa、弹性模量差<15 GPa的地层和岩性组合适合间接压裂,起裂位置距离煤层最优距离为<6 m,施工排量需要根据力学性质、断裂能密度等参数确定最优范围。 展开更多
关键词 碎软低渗煤层 间接压裂 储层改造 裂缝扩展 数值模拟 压裂模拟 地应力
下载PDF
基于微观流固耦合的超深层致密砂岩气藏应力敏感性分析
18
作者 姚军 王春起 +2 位作者 黄朝琴 周旭 李金龙 《天然气工业》 EI CAS CSCD 北大核心 2024年第5期45-55,共11页
超深层致密砂岩气藏具有强应力敏感性,目前常用的研究方法包括压力脉冲实验法和实时在线CT扫描法两种,压力脉冲实验法不能揭示产生应力敏感性的微观机理,而实时在线CT扫描法也无法模拟深部地层高压、高应力的条件。为解决应力敏感性实... 超深层致密砂岩气藏具有强应力敏感性,目前常用的研究方法包括压力脉冲实验法和实时在线CT扫描法两种,压力脉冲实验法不能揭示产生应力敏感性的微观机理,而实时在线CT扫描法也无法模拟深部地层高压、高应力的条件。为解决应力敏感性实验研究的不足,基于离散单元法与管道网络模型建立了微观流固耦合算法,编制了模拟器,并对模拟器力学计算和流固耦合模块的正确性进行了验证,分析了应力大小、加载方向和孔隙压力对岩心渗透率的影响,最后从微观上揭示了超深层致密砂岩气藏的应力敏感性机理。研究结果表明:①应力通过增加与之垂直方向上喉道两侧的法向压力,减小喉道的水力半径,进而降低储层的渗透率;②较高的孔隙压力能够阻碍岩石颗粒在应力作用下的移动,从而减缓了孔隙和喉道的变形,使模型保持较高的渗透率;③致密砂岩气藏的渗透率受到应力和地层压力的共同控制,并且具有各向异性,在垂直于最小主应力方向上形成渗透率较大的优势通道;④异常高压阻碍了地应力的压实作用,有利于保护储层孔隙,使地层有较好的储集性能和较高的渗透率。结论认为,根据离散元法结合孔隙网络模型建立的流固耦合方法可为理解超深层致密砂岩应力敏感性提供理论参考,并为超深层致密砂岩气藏的科学高效开发提供指导。 展开更多
关键词 超深层 致密砂岩气藏 离散元法 流固耦合 渗透率 应力敏感性 数值模拟
下载PDF
基于截面增大法的扣放角钢焊接加固负载H型钢的轴压承载力研究
19
作者 刘红波 张卓航 +3 位作者 陈志华 陈蕙芸 曹爽秋 张清沛 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2024年第5期530-543,共14页
负载下焊接加固是既有结构加固的重要形式,然而当前对加固形式及加固效果的研究仍然较为缺乏.因此,提出了一种新型负载焊接加固构造,设计了8组扣放角钢焊接加固H型钢试验.研究了焊接过程中的截面应力重分布规律以及焊接加固H型钢柱的轴... 负载下焊接加固是既有结构加固的重要形式,然而当前对加固形式及加固效果的研究仍然较为缺乏.因此,提出了一种新型负载焊接加固构造,设计了8组扣放角钢焊接加固H型钢试验.研究了焊接过程中的截面应力重分布规律以及焊接加固H型钢柱的轴压力学性能.试验中加固构件的截面为加固前的1.53倍~1.55倍,焊接加固后构件极限承载增大为加固前的1.74倍~1.90倍;加固构件和原构件协同工作,获得了良好的加固效果,虽然焊接热输入降低了构件焊缝间隔处的屈曲应力,但负载加固的构件表现出相对零载加固构件更高的极限承载力.随后建立并验证了一种新型焊接加固H型钢柱的数值模拟方法,探究了不同截面面积加固构件的加固效果;揭示了不同焊缝间隔以及焊接热效应对加固构件极限承载力的影响,并建立了相应的设计方法. 展开更多
关键词 H型钢 轴压性能 负载焊接 应力重分布 加固后力学性能 数值模拟方法
下载PDF
水下高速公路盾构隧道联络通道冻结施工模拟分析
20
作者 张军 张立鹏 +1 位作者 闫良涛 郑甲佳 《施工技术(中英文)》 CAS 2024年第3期14-20,共7页
公路盾构隧道联络通道建设面临较大的不确定性和风险,通常采用人工地层冻结法进行施工。以孟加拉吉大港卡纳普里河底盾构隧道联络通道为研究对象,分析联络通道施工过程中冻土帷幕和结构衬砌受力情况,研究采用双圈管冻结施工过程中冻土... 公路盾构隧道联络通道建设面临较大的不确定性和风险,通常采用人工地层冻结法进行施工。以孟加拉吉大港卡纳普里河底盾构隧道联络通道为研究对象,分析联络通道施工过程中冻土帷幕和结构衬砌受力情况,研究采用双圈管冻结施工过程中冻土帷幕发展规律。针对施工期和运营期衬砌受力的最不利工况进行验算,分析积极冻结和维护冻结阶段温度场的变化,并研究部分不确定参数的敏感性。分析结果表明,该联络通道设计施工方案合理可行。 展开更多
关键词 隧道 盾构 联络通道 冻结法 数值模拟 应力 温度场
下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部