A numerical analysis of a batch-type reheating furnace with and without thermal load was carried out using the Computational Fluid Dynamics technique. The furnace has two premixed burners and methane is used as fuel. ...A numerical analysis of a batch-type reheating furnace with and without thermal load was carried out using the Computational Fluid Dynamics technique. The furnace has two premixed burners and methane is used as fuel. Previous to the numerical experiments, a mesh convergence test was carried out and the average internal furnace temperature and the exhaust gases temperature were monitored as function of the number of cells in the discretized system. The influence of the Air/Fuel ratio, the position of the burners, and the thermal load on the average internal temperature, the exhaust gases temperature, and the molar fraction of methane and oxygen in the exhaust gases was numerically explored.展开更多
With the implementation of the production tests in permafrost and offshore regions in Canada,US,Japan,and China,the study of natural gas hydrate has progressed into the stage of technology development for industrial e...With the implementation of the production tests in permafrost and offshore regions in Canada,US,Japan,and China,the study of natural gas hydrate has progressed into the stage of technology development for industrial exploitation.The depressurization method is considered as a better strategy to produce gas from hydrate reservoirs based on production tests and laboratory experiments.Multi-well production is proposed to improve gas production efficiency,to meet the requirement for industrial production.For evaluating the applicability of multi-well production to hydrate exploitation,a 2D model is established,with numerical simulations of the performance of the multi-well pattern carried out.To understand the dissociation behavior of gas hydrate,the pressure and temperature distributions in the hydrate reservoir are specified,and the change in permeability of reservoir sediments is investigated.The results obtained indicate that multi-well production can improve the well connectivity,accelerate hydrate dissociation,enhance gas production rate and reduce water production as compared with single-well production.展开更多
Three dimensional geophysical models were abstracted and established according to characteristics of oil and gas reservoir.Then direct current fields for different models were simulated with finite element software(fi...Three dimensional geophysical models were abstracted and established according to characteristics of oil and gas reservoir.Then direct current fields for different models were simulated with finite element software(finite element program generator) by hole-to-surface resistivity method.Numerical solution was compared with analytical one for the homogeneity earth model.And a new parameter of deviation rate was proposed by analyzing different plot curves.The results show that the relative error of solution for homogeneity earth model may attain to 0.043%.And deviation rate decreases from 18% to 1% and its anomaly range becomes wide gradually when the depth of oil and gas reservoir increases from 200 to 1 500 m.If resistivity ratio of oil and gas reservoir to sur-rounding rock decreases from 100 to 10 for the resistive oil and gas reservoir,the amplitude attenuation of deviation rate nearly reaches 8%.When there exists stratum above oil and gas reservoir,and influence of resistive stratum may be eliminated or weakened and anomaly of oil and gas reservoir can be strengthened.展开更多
Geofluid, driven by tectonic stress, can migrate and aggregate in geological body. Thus, numerical simulation has been widely used to rebuild paleo-tectonic stress field and probe oil/gas (one type of geofluid) migr...Geofluid, driven by tectonic stress, can migrate and aggregate in geological body. Thus, numerical simulation has been widely used to rebuild paleo-tectonic stress field and probe oil/gas (one type of geofluid) migration and aggregation. Based on geological mapping, structural data, and mechanical parameters of rocks, we reconstruct the traces for gas/oil migration and aggregation in Dabashan intra-continental orogen using numerical simulation. The study shows that gas/oil, obviously dominated by late Middle Jurassic-Early Cretaceous paleo-tectonic stress field that is characterized by NE-SW shortening in the Dabashan thrust belt and SW-emanating shortening in its foreland belt, massively migrate from the Dabashan thrust belt to its foreland belt, that is, NE to SW, resulting in the formation of some probable favorable areas for oil/gas mainly along the Tiexi -Wuxi fault, in some superposed structure (e.g., Zhenba , Wanyuan , Huangjinkou , and Tongnanba areas), and in the Zigui Basin. Thus, our study shows that numerical simulation can be effectively applied to study oil/gas migration and aggregation in intra-continental orogen and provided some significant evidences for oil/gas exploration.展开更多
Relative literatures and accident statistics published at home and abroad in recent years show that in addition to the natural disasters such as earthquakes, landslides, etc., events closely relative to such human act...Relative literatures and accident statistics published at home and abroad in recent years show that in addition to the natural disasters such as earthquakes, landslides, etc., events closely relative to such human activities as wars, terrorist attacks and blasting construction have become important reasons of oil and gas pipeline damage and failure. Conducted are 3D dynamic numerical simulation on spread of blasting seismic waves and dynamic response of vibration process of buried oil and gas pipelines after accidental explosion of explosive storage and numerical analysis on simulation results and obtained are vibration speed response characteristics of the pipelines. Based on calculation results obtained in a number of different conditions, such as dynamite inventories of explosive storage, site media properties, materials and sizes of buried pipelines, etc., combined with quantitative analysis on vibration safety criterion, safety distances of buried pipelines are obtained in different conditions, which has important theoretical significance and application value for safe and proper operation of buried oil and gas pipelines.展开更多
The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective meth...The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective method to improve oil recovery factor from unconventional oil reservoirs. Hydrocarbon gas huff-n-puff becomes preferable when the CO_(2) source is limited. However, the impact of complex fracture networks and well interference on the EOR performance of multiple MFHWs is still unclear. The optimal gas huff-n-puff parameters are significant for enhancing oil recovery. This work aims to optimize the hydrocarbon gas injection and production parameters for multiple MFHWs with complex fracture networks in unconventional oil reservoirs. Firstly, the numerical model based on unstructured grids is developed to characterize the complex fracture networks and capture the dynamic fracture features.Secondly, the PVT phase behavior simulation was carried out to provide the fluid model for numerical simulation. Thirdly, the optimal parameters for hydrocarbon gas huff-n-puff were obtained. Finally, the dominant factors of hydrocarbon gas huff-n-puff under complex fracture networks are obtained by fuzzy mathematical method. Results reveal that the current pressure of hydrocarbon gas injection can achieve miscible displacement. The optimal injection and production parameters are obtained by single-factor analysis to analyze the effect of individual parameter. Gas injection time is the dominant factor of hydrocarbon gas huff-n-puff in unconventional oil reservoirs with complex fracture networks. This work can offer engineers guidance for hydrocarbon gas huff-n-puff of multiple MFHWs considering the complex fracture networks.展开更多
Based on a Lagrangian integral technique and Lagrangian particle-tracking technique,a numerical model was developed to simulate the underwater transport of oil from a deepwater spill. This model comprises two submodel...Based on a Lagrangian integral technique and Lagrangian particle-tracking technique,a numerical model was developed to simulate the underwater transport of oil from a deepwater spill. This model comprises two submodels: a plume dynamics model and an advection-diffusion model. The former is used to simulate the stages dominated by the initial jet momentum and plume buoyancy of the spilled oil,while the latter is used to simulate the stage dominated by the ambient current and turbulence. The model validity was verified through comparisons of the model predictions with experimental data from several laboratory flume experiments and a field experiment. To demonstrate the capability of the model further,it was applied to the simulation of a hypothetical oil spill occurring at the seabed of a deepwater oil/gas field in the South China Sea. The results of the simulation would be useful for contingency planning with regard to the emergency response to an underwater oil spill.展开更多
Gas condensate is one of the most different fluids in reservoir simulation due to retrograde condensation in case of pressure reduction.In this kind of fluids,two phenomena named negative inertia and positive coupling...Gas condensate is one of the most different fluids in reservoir simulation due to retrograde condensation in case of pressure reduction.In this kind of fluids,two phenomena named negative inertia and positive coupling,become significant in the high velocity zone around the wellbore.In this study,a modified black oil simulator is developed that take into account the velocity dependent relative permeability.Against the industrial simulator that assumes linear variation of transmissibilities by pressure,modified black oil nonlinear equations are solved directly without linearization.The developed code is validated by ECLIPSE simulator.The behavior of two real gas condensate fluids,a lean and a rich one,are compared with each other.For each fluid,simulations of PVT experiments are carried out to calculate black oil property applying Coats approach for gas condensate fluids.For both fluids,the proposed models for gas condensate velocity dependent relative permeability show different influence of velocity on relative permeability in the same conditions.Moreover,it is observed that higher flow rate of gas production leads to more condensate production during constant rate well testing.展开更多
文摘A numerical analysis of a batch-type reheating furnace with and without thermal load was carried out using the Computational Fluid Dynamics technique. The furnace has two premixed burners and methane is used as fuel. Previous to the numerical experiments, a mesh convergence test was carried out and the average internal furnace temperature and the exhaust gases temperature were monitored as function of the number of cells in the discretized system. The influence of the Air/Fuel ratio, the position of the burners, and the thermal load on the average internal temperature, the exhaust gases temperature, and the molar fraction of methane and oxygen in the exhaust gases was numerically explored.
基金This work is funded by the Ministry of Science and Technology of the People's Republic of China(Grant No.2017YFC0307603)the China Geological Survey(Grant No.DD20190234 and HD-JJHT-20).
文摘With the implementation of the production tests in permafrost and offshore regions in Canada,US,Japan,and China,the study of natural gas hydrate has progressed into the stage of technology development for industrial exploitation.The depressurization method is considered as a better strategy to produce gas from hydrate reservoirs based on production tests and laboratory experiments.Multi-well production is proposed to improve gas production efficiency,to meet the requirement for industrial production.For evaluating the applicability of multi-well production to hydrate exploitation,a 2D model is established,with numerical simulations of the performance of the multi-well pattern carried out.To understand the dissociation behavior of gas hydrate,the pressure and temperature distributions in the hydrate reservoir are specified,and the change in permeability of reservoir sediments is investigated.The results obtained indicate that multi-well production can improve the well connectivity,accelerate hydrate dissociation,enhance gas production rate and reduce water production as compared with single-well production.
基金Projects(2006AA06Z105,2007AA06Z134) supported by the National High-Tech Research and Development Program of China
文摘Three dimensional geophysical models were abstracted and established according to characteristics of oil and gas reservoir.Then direct current fields for different models were simulated with finite element software(finite element program generator) by hole-to-surface resistivity method.Numerical solution was compared with analytical one for the homogeneity earth model.And a new parameter of deviation rate was proposed by analyzing different plot curves.The results show that the relative error of solution for homogeneity earth model may attain to 0.043%.And deviation rate decreases from 18% to 1% and its anomaly range becomes wide gradually when the depth of oil and gas reservoir increases from 200 to 1 500 m.If resistivity ratio of oil and gas reservoir to sur-rounding rock decreases from 100 to 10 for the resistive oil and gas reservoir,the amplitude attenuation of deviation rate nearly reaches 8%.When there exists stratum above oil and gas reservoir,and influence of resistive stratum may be eliminated or weakened and anomaly of oil and gas reservoir can be strengthened.
基金supported by the National Natural ScienceFoundation of China (No. 41172184)SINOPROBE-08-01SINOPEC
文摘Geofluid, driven by tectonic stress, can migrate and aggregate in geological body. Thus, numerical simulation has been widely used to rebuild paleo-tectonic stress field and probe oil/gas (one type of geofluid) migration and aggregation. Based on geological mapping, structural data, and mechanical parameters of rocks, we reconstruct the traces for gas/oil migration and aggregation in Dabashan intra-continental orogen using numerical simulation. The study shows that gas/oil, obviously dominated by late Middle Jurassic-Early Cretaceous paleo-tectonic stress field that is characterized by NE-SW shortening in the Dabashan thrust belt and SW-emanating shortening in its foreland belt, massively migrate from the Dabashan thrust belt to its foreland belt, that is, NE to SW, resulting in the formation of some probable favorable areas for oil/gas mainly along the Tiexi -Wuxi fault, in some superposed structure (e.g., Zhenba , Wanyuan , Huangjinkou , and Tongnanba areas), and in the Zigui Basin. Thus, our study shows that numerical simulation can be effectively applied to study oil/gas migration and aggregation in intra-continental orogen and provided some significant evidences for oil/gas exploration.
文摘Relative literatures and accident statistics published at home and abroad in recent years show that in addition to the natural disasters such as earthquakes, landslides, etc., events closely relative to such human activities as wars, terrorist attacks and blasting construction have become important reasons of oil and gas pipeline damage and failure. Conducted are 3D dynamic numerical simulation on spread of blasting seismic waves and dynamic response of vibration process of buried oil and gas pipelines after accidental explosion of explosive storage and numerical analysis on simulation results and obtained are vibration speed response characteristics of the pipelines. Based on calculation results obtained in a number of different conditions, such as dynamite inventories of explosive storage, site media properties, materials and sizes of buried pipelines, etc., combined with quantitative analysis on vibration safety criterion, safety distances of buried pipelines are obtained in different conditions, which has important theoretical significance and application value for safe and proper operation of buried oil and gas pipelines.
基金funded by the National Natural Science Foundation of China(No.51974268)Open Fund of Key Laboratory of Ministry of Education for Improving Oil and Gas Recovery(NEPUEOR-2022-03)Research and Innovation Fund for Graduate Students of Southwest Petroleum University(No.2022KYCX005)。
文摘The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective method to improve oil recovery factor from unconventional oil reservoirs. Hydrocarbon gas huff-n-puff becomes preferable when the CO_(2) source is limited. However, the impact of complex fracture networks and well interference on the EOR performance of multiple MFHWs is still unclear. The optimal gas huff-n-puff parameters are significant for enhancing oil recovery. This work aims to optimize the hydrocarbon gas injection and production parameters for multiple MFHWs with complex fracture networks in unconventional oil reservoirs. Firstly, the numerical model based on unstructured grids is developed to characterize the complex fracture networks and capture the dynamic fracture features.Secondly, the PVT phase behavior simulation was carried out to provide the fluid model for numerical simulation. Thirdly, the optimal parameters for hydrocarbon gas huff-n-puff were obtained. Finally, the dominant factors of hydrocarbon gas huff-n-puff under complex fracture networks are obtained by fuzzy mathematical method. Results reveal that the current pressure of hydrocarbon gas injection can achieve miscible displacement. The optimal injection and production parameters are obtained by single-factor analysis to analyze the effect of individual parameter. Gas injection time is the dominant factor of hydrocarbon gas huff-n-puff in unconventional oil reservoirs with complex fracture networks. This work can offer engineers guidance for hydrocarbon gas huff-n-puff of multiple MFHWs considering the complex fracture networks.
基金Supported by the 12th Five-Year Project of Science and Technology of China National Offshore Oil Corporation “Development of Underwater Oil Spill Numerical Simulation in Deep Water”(No.CNOOC-KJ 125 ZDXM 00 000 00 NFCY 2011-03)
文摘Based on a Lagrangian integral technique and Lagrangian particle-tracking technique,a numerical model was developed to simulate the underwater transport of oil from a deepwater spill. This model comprises two submodels: a plume dynamics model and an advection-diffusion model. The former is used to simulate the stages dominated by the initial jet momentum and plume buoyancy of the spilled oil,while the latter is used to simulate the stage dominated by the ambient current and turbulence. The model validity was verified through comparisons of the model predictions with experimental data from several laboratory flume experiments and a field experiment. To demonstrate the capability of the model further,it was applied to the simulation of a hypothetical oil spill occurring at the seabed of a deepwater oil/gas field in the South China Sea. The results of the simulation would be useful for contingency planning with regard to the emergency response to an underwater oil spill.
文摘Gas condensate is one of the most different fluids in reservoir simulation due to retrograde condensation in case of pressure reduction.In this kind of fluids,two phenomena named negative inertia and positive coupling,become significant in the high velocity zone around the wellbore.In this study,a modified black oil simulator is developed that take into account the velocity dependent relative permeability.Against the industrial simulator that assumes linear variation of transmissibilities by pressure,modified black oil nonlinear equations are solved directly without linearization.The developed code is validated by ECLIPSE simulator.The behavior of two real gas condensate fluids,a lean and a rich one,are compared with each other.For each fluid,simulations of PVT experiments are carried out to calculate black oil property applying Coats approach for gas condensate fluids.For both fluids,the proposed models for gas condensate velocity dependent relative permeability show different influence of velocity on relative permeability in the same conditions.Moreover,it is observed that higher flow rate of gas production leads to more condensate production during constant rate well testing.