The wind and snow environment outside the planned space plays a key role in the comfort and safety of the human habitat in severe cold regions. Traditional studies of the external environment of human settlements, how...The wind and snow environment outside the planned space plays a key role in the comfort and safety of the human habitat in severe cold regions. Traditional studies of the external environment of human settlements, however, frequently overlook the combined impacts of wind and snow environments. Furthermore, in urban meteorological studies, it is impossible to accurately assess the wind and snow environment in specific areas or locations. In this study, a refined Computational Fluid Dynamics(CFD) multiphase flow numerical method was used to simulate a planning space's wind and snow environment. The study classified the Snowstorm Weather Grade(SWG) by incorporating the Snowstorm Weather Index(SWI) to generate calculation results of the wind environment and snow environment. In particular, 150 measurement points in the planning space were chosen for analysis and evaluation of their wind and snow environments. The results demonstrated that the SWI index can effectively correlate to the wind and snow environment calculation results. In addition, the graph of SWI showed that 55% of the measurement points had a moderate wind and snow grade SWI, which exceeds the average grade for the entire region. The practical application shows that the wind and snow environment assessment indexes and technical methods developed in this paper can be successfully applied to wind and snow environment studies in other cold cities.展开更多
The wind environment around residential building groups is increasingly concerned,while the dwelling groups as the elementary unit of planning design,its quality of surrounding wind environment will directly affect pe...The wind environment around residential building groups is increasingly concerned,while the dwelling groups as the elementary unit of planning design,its quality of surrounding wind environment will directly affect people's life. This study based on the climatic conditions of severe cold regions,selects four dwellings groups with different openings scale and position as the research objects,and then simulates and analyzes the wind speed distribution characteristics of each pattern. Meanwhile,it extracts the wind speed values of one hundred points of each pattern and applies the coefficient of uniformity method to the ecological evaluation. It has been found that grouping pattern of buildings has a dramatic effect on the resulting airflow behavior. Configurations that contain a T-shaped central space with small opened side can effectively prevent and contain airflow in the site offer. The interactive influence between layout of dwelling groups and wind environment are explored,so as to provide basis for the planning design of dwelling groups.展开更多
In this study,a two-dimensional flow-pollutant coupled model was developed based on a quadtree grid.This model was established to allow the accurate simulation of wind-driven flow in a large-scale shallow lake with ir...In this study,a two-dimensional flow-pollutant coupled model was developed based on a quadtree grid.This model was established to allow the accurate simulation of wind-driven flow in a large-scale shallow lake with irregular natural boundaries when focusing on important smallscale localized flow features.The quadtree grid was created by domain decomposition.The governing equations were solved using the finite volume method,and the normal fluxes of mass,momentum,and pollutants across the interface between cells were computed by means of a Godunov-type Osher scheme.The model was employed to simulate wind-driven flow in a circular basin with non-uniform depth.The computed values were in agreement with analytical data.The results indicate that the quadtree grid has fine local resolution and high efficiency,and is convenient for local refinement.It is clear that the quadtree grid model is effective when applied to complex flow domains.Finally,the model was used to calculate the flow field and concentration field of Taihu Lake,demonstrating its ability to predict the flow and concentration fields in an actual water area with complex geometry.展开更多
The leakage gas from a buried natural gas pipelines has the great potential to cause economic losses and environmental pollution owing to the complexity of the mountainous environment.In this study,computational fluid...The leakage gas from a buried natural gas pipelines has the great potential to cause economic losses and environmental pollution owing to the complexity of the mountainous environment.In this study,computational fluid dynamics(CFD)method was applied to investigate the diffusion law and hazard range of buried natural gas pipeline leakage in mountainous environment.Based on cloud chart,concentration at the monitoring site and hazard range of lower explosion limit(LEL)and upper explosion limit(UEL),the influences of leakage hole direction and shape,soil property,burial depth,obstacle type on the diffusion law and hazard range are analyzed.Results show that the leakage gas is not radially diffused until it reaches the ground,and the velocity of gas diffusion to the ground and the hazard range decrease as the angle between the leaking direction and the buoyancy direction increases.Triangular and square leak holes have a faster diffusion rate and a wider hazard range than circular.The diffusion rate of leakage gas in soil rises as soil granularity and porosity increase.The time of leakage gas diffusion to the ground increases significantly with the increase of burial depth,and the hazard range reduces as burial depth increases.Boulder-type obstacles will alter the diffusion path of the leakage gas and accelerate the expansion of the hazard distance,while trench-type obstacles will cause the natural gas to accumulate in the trench and form a high concentration region slowing the expansion of the surface gas concentration.展开更多
This paper presents the simulation results of the wind environment around a single high-rise building and that around two tall buildings in tandem arrangement by using the lattice Boltzmann method with an aim to under...This paper presents the simulation results of the wind environment around a single high-rise building and that around two tall buildings in tandem arrangement by using the lattice Boltzmann method with an aim to understand the ventilation issues around high-rise buildings in an urban environment.We analyzed the velocity distribution around the buildings and performed numericl simulations to reveal the formation and evolution law of the complex vortex system around the high-rise buildings.Numerical simulation results manifest a periodicity phenamenon in the process of the vortex evolution.For the case of two high-rise buildings,wind velocity in the space between the two buildings is very small,which is nearly a silent regime.Wind velocity above the front building is relatively larger and the maximum wind velocity is approximately 2.5 times the incoming wind velocity.The numerical results can be used in layout planning of high-rise residential buildings to create better environment for ventilation purpose in an urban area.展开更多
In order to control the dust pollution produced by air leg rock drill in the trolley area during the excavation of long-distance single ended tunnel,the full-scale physical model of working face was established by usi...In order to control the dust pollution produced by air leg rock drill in the trolley area during the excavation of long-distance single ended tunnel,the full-scale physical model of working face was established by using FLUENT software,and the numerical simulation analysis of tunnel drilling ventilation and dust removal parameters was carried out.The results show that it is difficult to control the dust pollution of the face by conventional ventilation,and the drilling dust is distributed in the range of 10 m from the face;after the introduction of the long pressure and short suction ventilation scheme,when the ratio of compressed air volume to exhaust air volume is 0.72,the height of the pressure fan is 2.5 m,the distance between the pressure fan and the palm face is 20 m,and the exhaust fan is 12 m away from the palm,the dust concentration control efficiency of the working face is increased by about 60%.Therefore,in the similar long-distance single head tunnel construction,it is appropriate to adopt the dust removal method of long-distance short suction and exhaust fan to ensure the working environment.展开更多
The analytical solution of the convection diffusion equation is considered by two-dimensional Fourier transform and the inverse Fourier transform. To get the numerical solution, the Crank-Nicolson finite difference me...The analytical solution of the convection diffusion equation is considered by two-dimensional Fourier transform and the inverse Fourier transform. To get the numerical solution, the Crank-Nicolson finite difference method is constructed, which is second-order accurate in time and space. Numerical simulation shows excellent agreement with the analytical solution. The dynamic visualization of the simulating results is realized on ArcGIS platform. This work provides a quick and intuitive decision-making basis for water resources protection, especially in dealing with water pollution emergencies.展开更多
基金Sponsored by the National Natural Science Foundation of China (Grant No. 51708151)。
文摘The wind and snow environment outside the planned space plays a key role in the comfort and safety of the human habitat in severe cold regions. Traditional studies of the external environment of human settlements, however, frequently overlook the combined impacts of wind and snow environments. Furthermore, in urban meteorological studies, it is impossible to accurately assess the wind and snow environment in specific areas or locations. In this study, a refined Computational Fluid Dynamics(CFD) multiphase flow numerical method was used to simulate a planning space's wind and snow environment. The study classified the Snowstorm Weather Grade(SWG) by incorporating the Snowstorm Weather Index(SWI) to generate calculation results of the wind environment and snow environment. In particular, 150 measurement points in the planning space were chosen for analysis and evaluation of their wind and snow environments. The results demonstrated that the SWI index can effectively correlate to the wind and snow environment calculation results. In addition, the graph of SWI showed that 55% of the measurement points had a moderate wind and snow grade SWI, which exceeds the average grade for the entire region. The practical application shows that the wind and snow environment assessment indexes and technical methods developed in this paper can be successfully applied to wind and snow environment studies in other cold cities.
基金Sponsored by the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20122302110041)National Natural Science Foundation of China(Grant No.51378136)the Fundamental Research Funds for the Central Universities(Grant No.HIT.KISTP.201419)
文摘The wind environment around residential building groups is increasingly concerned,while the dwelling groups as the elementary unit of planning design,its quality of surrounding wind environment will directly affect people's life. This study based on the climatic conditions of severe cold regions,selects four dwellings groups with different openings scale and position as the research objects,and then simulates and analyzes the wind speed distribution characteristics of each pattern. Meanwhile,it extracts the wind speed values of one hundred points of each pattern and applies the coefficient of uniformity method to the ecological evaluation. It has been found that grouping pattern of buildings has a dramatic effect on the resulting airflow behavior. Configurations that contain a T-shaped central space with small opened side can effectively prevent and contain airflow in the site offer. The interactive influence between layout of dwelling groups and wind environment are explored,so as to provide basis for the planning design of dwelling groups.
基金supported by the National Natural Science Foundation of China(Grants No.51739002 and 51479064)the World-Class Universities(Disciplines)and Characteristic Development Guidance Funds for the Central Universitiesthe Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions(Grant No.PPZY2015A051)
文摘In this study,a two-dimensional flow-pollutant coupled model was developed based on a quadtree grid.This model was established to allow the accurate simulation of wind-driven flow in a large-scale shallow lake with irregular natural boundaries when focusing on important smallscale localized flow features.The quadtree grid was created by domain decomposition.The governing equations were solved using the finite volume method,and the normal fluxes of mass,momentum,and pollutants across the interface between cells were computed by means of a Godunov-type Osher scheme.The model was employed to simulate wind-driven flow in a circular basin with non-uniform depth.The computed values were in agreement with analytical data.The results indicate that the quadtree grid has fine local resolution and high efficiency,and is convenient for local refinement.It is clear that the quadtree grid model is effective when applied to complex flow domains.Finally,the model was used to calculate the flow field and concentration field of Taihu Lake,demonstrating its ability to predict the flow and concentration fields in an actual water area with complex geometry.
文摘The leakage gas from a buried natural gas pipelines has the great potential to cause economic losses and environmental pollution owing to the complexity of the mountainous environment.In this study,computational fluid dynamics(CFD)method was applied to investigate the diffusion law and hazard range of buried natural gas pipeline leakage in mountainous environment.Based on cloud chart,concentration at the monitoring site and hazard range of lower explosion limit(LEL)and upper explosion limit(UEL),the influences of leakage hole direction and shape,soil property,burial depth,obstacle type on the diffusion law and hazard range are analyzed.Results show that the leakage gas is not radially diffused until it reaches the ground,and the velocity of gas diffusion to the ground and the hazard range decrease as the angle between the leaking direction and the buoyancy direction increases.Triangular and square leak holes have a faster diffusion rate and a wider hazard range than circular.The diffusion rate of leakage gas in soil rises as soil granularity and porosity increase.The time of leakage gas diffusion to the ground increases significantly with the increase of burial depth,and the hazard range reduces as burial depth increases.Boulder-type obstacles will alter the diffusion path of the leakage gas and accelerate the expansion of the hazard distance,while trench-type obstacles will cause the natural gas to accumulate in the trench and form a high concentration region slowing the expansion of the surface gas concentration.
基金Funded by the Natural Science Foundation of Tianjin Municipality (No. 06YFJMJC05300)the Science and Technology Development Foundation for Universities of Tianjin Municipality (No. 20060823)
文摘This paper presents the simulation results of the wind environment around a single high-rise building and that around two tall buildings in tandem arrangement by using the lattice Boltzmann method with an aim to understand the ventilation issues around high-rise buildings in an urban environment.We analyzed the velocity distribution around the buildings and performed numericl simulations to reveal the formation and evolution law of the complex vortex system around the high-rise buildings.Numerical simulation results manifest a periodicity phenamenon in the process of the vortex evolution.For the case of two high-rise buildings,wind velocity in the space between the two buildings is very small,which is nearly a silent regime.Wind velocity above the front building is relatively larger and the maximum wind velocity is approximately 2.5 times the incoming wind velocity.The numerical results can be used in layout planning of high-rise residential buildings to create better environment for ventilation purpose in an urban area.
基金Project(51874016)supported by the National Natural Science Foundation of China。
文摘In order to control the dust pollution produced by air leg rock drill in the trolley area during the excavation of long-distance single ended tunnel,the full-scale physical model of working face was established by using FLUENT software,and the numerical simulation analysis of tunnel drilling ventilation and dust removal parameters was carried out.The results show that it is difficult to control the dust pollution of the face by conventional ventilation,and the drilling dust is distributed in the range of 10 m from the face;after the introduction of the long pressure and short suction ventilation scheme,when the ratio of compressed air volume to exhaust air volume is 0.72,the height of the pressure fan is 2.5 m,the distance between the pressure fan and the palm face is 20 m,and the exhaust fan is 12 m away from the palm,the dust concentration control efficiency of the working face is increased by about 60%.Therefore,in the similar long-distance single head tunnel construction,it is appropriate to adopt the dust removal method of long-distance short suction and exhaust fan to ensure the working environment.
文摘The analytical solution of the convection diffusion equation is considered by two-dimensional Fourier transform and the inverse Fourier transform. To get the numerical solution, the Crank-Nicolson finite difference method is constructed, which is second-order accurate in time and space. Numerical simulation shows excellent agreement with the analytical solution. The dynamic visualization of the simulating results is realized on ArcGIS platform. This work provides a quick and intuitive decision-making basis for water resources protection, especially in dealing with water pollution emergencies.