A self-developed forced convection rheoforming (FCR) machine for the preparation of light alloy semisolid slurry was introduced. The microstructure characteristics of 7075 aluminium alloy semisolid slurry at differe...A self-developed forced convection rheoforming (FCR) machine for the preparation of light alloy semisolid slurry was introduced. The microstructure characteristics of 7075 aluminium alloy semisolid slurry at different stirring speeds prepared by the FCR process were analyzed. The experimental results suggest that with the increase of the stirring speed, the mean grain size of the semisolid decreases and the shape factor as well as the number of primary grains increase. Meanwhile, the preparation process of semisolid slurry was numerically simulated. The flow characteristics of the melt in the device and the effect of the stirring speed on temperature field and solid fraction of the melt were investigated. The simulated results show that during the preparation process of semisolid slurry, there is a complex convection within the FCR device that obviously changes the temperature field distribution and solid fraction of the melt. When the convection intensity increases, the scope of the undercooling gradient of the melt is reduced and temperature distribution is improved.展开更多
The Florida peninsula in the USA has a frequent occurrence of sea breeze(SB)thunderstorms.In this study,the numerical simulation of a Florida SB and its associated convective initiation(CI)is simulated using the mesos...The Florida peninsula in the USA has a frequent occurrence of sea breeze(SB)thunderstorms.In this study,the numerical simulation of a Florida SB and its associated convective initiation(CI)is simulated using the mesoscale community Weather Research and Forecasting(WRF)model in one-way nested domains at different horizontal resolutions.Results are compared with observations to examine the accuracy of model-simulated SB convection and factors that influence SB CI within the simulation.It is found that the WRF model can realistically reproduce the observed SB CI.Differences are found in the timing,location,and intensity of the convective cells at different domains with various spatial resolutions.With increasing spatial resolution,the simulation improvements are manifested mainly in the timing of CI and the orientation of the convection after the sea breeze front(SBF)merger into the squall line over the peninsula.Diagnoses indicate that accurate representation of geophysical variables(e.g.,coastline and bay shape,small lakes measuring 10-30 km2),better resolved by the high resolution,play a significant role in improving the simulations.The geophysical variables,together with the high resolution,impact the location and timing of SB CI due to changes in low-level atmospheric convergence and surface sensible heating.More importantly,they enable Florida lakes(30 km2 and larger)to produce noticeable lake breezes(LBs)that collide with the SBFs to produce CI.Furthermore,they also help the model reproduce a stronger convective squall line caused by merging SBs,leading to more accurate locations of postfrontal convective systems.展开更多
The present work relates to a numerical investigation of double diffusive mixed convection around a horizontal annulus with a finned inner cylinder.The solutal and thermal buoyancy forces are sustained by maintaining ...The present work relates to a numerical investigation of double diffusive mixed convection around a horizontal annulus with a finned inner cylinder.The solutal and thermal buoyancy forces are sustained by maintaining the inner and outer cylinders at uniform temperatures and concentrations.Buoyancy effects are also considered,with the Boussinesq approximation.The forced convection effect is induced by the outer cylinder rotating with an angular velocity(ω)in an anti-clockwise direction.The studies are made for various combinations of dimensionless numbers;buoyancy ratio number(N),Lewis number(Le),Richardson number(Ri)and Grashof number(Gr).The isotherms,isoconcentrations and streamlines as well as both average and local Nusselt and Sherwood numbers were studied.A finite volume scheme is adopted to solve the transport equations for continuity,momentum,energy and mass transfer.The results indicate that the use of fins on the inner cylinder with outer cylinder rotation,significantly improves the heat and mass transfer in the annulus.展开更多
The analytical solution of the convection diffusion equation is considered by two-dimensional Fourier transform and the inverse Fourier transform. To get the numerical solution, the Crank-Nicolson finite difference me...The analytical solution of the convection diffusion equation is considered by two-dimensional Fourier transform and the inverse Fourier transform. To get the numerical solution, the Crank-Nicolson finite difference method is constructed, which is second-order accurate in time and space. Numerical simulation shows excellent agreement with the analytical solution. The dynamic visualization of the simulating results is realized on ArcGIS platform. This work provides a quick and intuitive decision-making basis for water resources protection, especially in dealing with water pollution emergencies.展开更多
A mathematical model coupling the momentum, energy and species conservation equa-tions was proposed to calculate the macro--segregation of Fe--C alloy ingot during solid-ification. The corresponding simulation softwar...A mathematical model coupling the momentum, energy and species conservation equa-tions was proposed to calculate the macro--segregation of Fe--C alloy ingot during solid-ification. The corresponding simulation software which concurrently solves the macro-scopic mass, momentum, energy and species conservation equations has been developedby applying the SIMPLE algorithm.The thermo--solutal convection in a NH_4 Cl--H_2O ingot is verified and the result showsgood agreement with that reported. Then macro--segregation in a steel ingot is simu-lated by using the developed program. The steel ingot is in a rectangular mold with ariser. The fluid flow is mainly induced by the temperature field and the solid fraction.The macro--segregation pattern is mainly affected by the thermo--induced convectionin the mushy zone. The negative segregation forms along the walls of the casting.The positive segregation forms at the top center of the casting into the riser. Thespecies concentration reaches the peak in the center of the ingot where solidificationends lastly.展开更多
A 3D model applying temperature-and carbon concentration-dependent material properties was developed to describe the scrap melting behavior and carbon diffusion under natural convection.Simulated results agreed reason...A 3D model applying temperature-and carbon concentration-dependent material properties was developed to describe the scrap melting behavior and carbon diffusion under natural convection.Simulated results agreed reasonably well with experimental ones.Scrap melting was subdivided into four stages:formation of a solidified layer,rapid melting of the solidified layer,carburization,and carburization+normal melting.The carburization stage could not be ignored at low temperature because the carburization time for the sample investigated was 214 s at 1573 K compared to 12 s at 1723 K.The thickness of the boundary layer with significant concentration difference at 1573 K increased from 130μm at 5 s to 140μm at 60 s.The maximum velocity caused by natural convection decreased from 0.029 m·s^(−1)at 5 s to 0.009 m·s^(−1)at 634 s because the differences in temperature and density between the molten metal and scrap decreased with time.展开更多
The Marangoni effect induced by mass transfer at the interface between two immiscible liquids displays important influence on laboratory and industrial operation of solvent extraction. A systematic numerical study of ...The Marangoni effect induced by mass transfer at the interface between two immiscible liquids displays important influence on laboratory and industrial operation of solvent extraction. A systematic numerical study of the two-dimensional Marangoni effect in a two liquid layer system was conducted. The linear relationship of the inter- facial tension versus the solute concentration was incorporated into a mathematical model accounting for liquid flow and mass transfer in both phases. The typical cases analyzed by Sternling & Scriven (AIChE J., 1959) using the linear instability theory were simulated bv the finite difference method and good agreement between the theory and the numerical simulation was observed. The simulation suggests that the Marangoni convection needs certain time to develop sufficiently in strength and scale to enhance the interphase mass transfer, the Marangoni effect is dynamic and transient, and remains at some stabilized level as long as the mass transfer driving force is kept con- stant. When certain level of shear is imposed at the interface as in most cases of practical significance, the Maran- goni effect is suppressed slightly but progressively as the shear is increased gradually. The present two-dimensional simulation of the Marangoni effect provides some insight into the underlying mechanism and also the basis for further theoretical study of the three-dimensional Marangoni effect in the real world and in chemical engineering applications.展开更多
The silicothermic reduction of magnesium was investigated by the non-isothermal thermoanalysis in flowing argon,while the traditional investigations of silicothermic process for magnesium reduction were carried out un...The silicothermic reduction of magnesium was investigated by the non-isothermal thermoanalysis in flowing argon,while the traditional investigations of silicothermic process for magnesium reduction were carried out under vacuum conditions.Firstly,the thermal gravimetric(TG)and derivative thermogravimetric(DTG)characteristic of briquettes prepared with calcined dolomite,ferrosilicon and fluorite were characterized by the thermogravimetric analyzer(TGA)at different heating rates.The intrinsic chemical kinetic mechanism was identified as a formal chemical reaction with the Nth order type which showed apparent activation energy E and reaction order n were 290.168 kJ mol^(-1) and 1.076,respectively.Then,a novel technique of magnesium production without vacuum was put forward and a three-dimensional unsteady numerical model incorporating the chemical reaction,radiation,heat conduction and heat convection was established and simulated,which was verified by Pidgeon process and novel tech no logy.rIhe nu merical results showed that the cycle time of the novel technique could be reduced when the argon temperature was higher than 1343 K and the argon entrance velocity was over 0.05 m s^(-1).And the effect of the argon temperature on reduction degree was much larger than that of entrance velocity.展开更多
The NCC T63L20 model of the National Climate Center, China Meteorological Administration is employed to simulate the 1998 summer flood, which mainly occurred in the region of the Yangtze River and Northeast China. For...The NCC T63L20 model of the National Climate Center, China Meteorological Administration is employed to simulate the 1998 summer flood, which mainly occurred in the region of the Yangtze River and Northeast China. For this study, two kinds of cumulus convection parameterized schemes are employed in this model respectively. The simulations show that the Gregory parameterized scheme, which is still used in the United Kingdom Meteorological Office routine model, simulates more reasonable rainfall amount and distribution compared to the Kuo-type scheme. Moreover, the Gregory scheme better simulates the tendency of general circulation than the Kuo-type scheme. On the whole, the Gregory scheme provides a good simulation of the main features of the seasonal precipitation and general circulation in China, although the simulated result still exhibits some departures from the observations.展开更多
A multiphase flow 3D numerical simulation method employing the coupled volume of fluid(VOF)and level set model is established to study the reactive absorption of CO_(2)by the monoethanolamine(MEA)aqueous solution in a...A multiphase flow 3D numerical simulation method employing the coupled volume of fluid(VOF)and level set model is established to study the reactive absorption of CO_(2)by the monoethanolamine(MEA)aqueous solution in a falling film microchannel.Based on the flow-reaction-mass transfer model of the MEA-CO_(2)system in the falling film microchannel,the enhancement effect of the Marangoni convection in this reactive absorption process is analyzed.The enhancement factor of the Marangoni convection obtained in this work is in good agreement with experimental results in the literature.With consideration of the absorption ratio as well as the enhancement effect of the Marangoni convection,the influence of different MEA concentrations on absorption of CO_(2)is investigated.Furthermore,the appropriate MEA concentration for absorption enhanced by the Marangoni convection is acquired.展开更多
For the three-dimensional convection-dominated problem of dynamics of fluids in porous media, the second order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward. Fract...For the three-dimensional convection-dominated problem of dynamics of fluids in porous media, the second order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward. Fractional steps techniques are needed to convert a multi-dimensional problem into a series of successive one-dimensional problems. Some techniques, such as calculus of variations, energy method, multiplicative commutation rule of difference operators, decomposition of high order difference operators, and the theory of prior estimates are adopted. Optimal order estimates are derived to determine the error in the second order approximate solution. These methods have already been applied to the numerical simulation of migration-accumulation of oil resources and predicting the consequences of seawater intrusion and protection projects.展开更多
Numerical simulations of flow in the melt(CdZnTe) with different conditions are conducted using the finite-difference method.When the top surface of the melt is solid wall under microgravity condition,the thermocapill...Numerical simulations of flow in the melt(CdZnTe) with different conditions are conducted using the finite-difference method.When the top surface of the melt is solid wall under microgravity condition,the thermocapillary convection is caused in the melt by the surface tension gradient on the free surface.As the Marangoni number is small,the flow is steady thermocapillary convection.As the Marangoni number exceeds the critical value,the steady flow transits into unstable thermocapillary convection.When the top surface of the melt is free surface under microgravity,two roll cells are observed in the melt,which are driven by both the surface tension gradients on the upper and lower free surfaces.When the top surface of the melt is free surface under gravity condition,the effect of the buoyancy on the flow is little as the Marangoni number is small.With the Marangoni number increasing,the effect of the buoyancy increases,which makes the upper roll cell weaken and the lower roll cell strengthen.展开更多
Based on the recent observations about the movement and rheological structure of the lithosphere and deformation pattern of the crust, we developed a three-dimensional finite element model for the northeastern margin ...Based on the recent observations about the movement and rheological structure of the lithosphere and deformation pattern of the crust, we developed a three-dimensional finite element model for the northeastern margin of the Tibetan Plateau.The model considered the impacts of both external and internal conditions, including mantle convection, gravitational potential energy and block interactions. We compared the simulated surface movement rates to the observed GPS velocities, and the results revealed that crustal movement gradually decreased toward the edge of the plateau. The factors controlling this pattern are the interactions of adjacent blocks, gravitational potential energy of the plateau, and also mantle convection as well. Additionally,according to the observation that there was an apparent difference between the horizontal movement rate of the lithosphere and convective velocity of the underlying mantle, and also based on the results of seismic anisotropy studies that suggest different strengths and deformation regimes of the lithosphere in different tectonic blocks, we proposed that the impact of mantle convection on the lithosphere may have varied in space, and introduced a parameter named mantle convection intensity factor in numerical simulations. Our simulation results show consistent surface movement rates with GPS observations, which further supports the viewpoint of seismic anisotropy studies, i.e., the degree of coupling between the crust and mantle varies significantly among different blocks.展开更多
THe effects of strong convection electric field on the electron density in the auroral ionosphericF-region have been simulated numerically by means of a physical model. It is found that an enhancement of electric fiel...THe effects of strong convection electric field on the electron density in the auroral ionosphericF-region have been simulated numerically by means of a physical model. It is found that an enhancement of electric field directed west-northward in post-noon or west-southward in pre-noon results in an ionization depletion with its maximum at altitudes 40–50 km higher than that of theF 2 peak. When the enhanced electric field lasts for 45 min and has a maximum about 32 mV/m, the resulted ionization depletions reach their maximum at the time just ~10 min behind the time when the convection electric field and ion temperature enhancements reach their maximum. This is consistent well with EISCAT observations. The magnitudes of the percentage ionization depletions and their recovery time are dependent not only on the intensity of the electric field, but also on the diurnal variation phase of the background electron density.展开更多
In this paper, a close relationship between the intraseasonal variation of subtropical high over East Asia and the convective activities around the South China Sea and the Philippines is analysed from OLR data.This re...In this paper, a close relationship between the intraseasonal variation of subtropical high over East Asia and the convective activities around the South China Sea and the Philippines is analysed from OLR data.This relationship is studied by using the theory of wave propagating in a slowly varying medium and by using a quasi-geoslrophic, linear, spherical model and the IAP-GCM, respectively. The results show that when the SST is warming around the western tropical Pacific or the Philippines, the convective activities are intensified around the Philippines. As a consequence, the subtropical high will be intensified over East Asia. The computed results also show that when the anomaly of convective activities are caused around the Philippines, a teleconnection pattern of circulation anomalies will be caused over South Asia, East Asia and North America.展开更多
Numerical simulation of meso-β-scale convective cloud systems associated with a PRE-STORM MCC case has been carried out using a 2-D version of the CSU Regional Atmospheric Modeling System (RAMS) nonhydrostatic model ...Numerical simulation of meso-β-scale convective cloud systems associated with a PRE-STORM MCC case has been carried out using a 2-D version of the CSU Regional Atmospheric Modeling System (RAMS) nonhydrostatic model with parameterized microphysics. It is found that the predicted meso-r-scale convective phenomena arc basically unsteady under the situation of strong shear at low-levels, while the meso-β-scale convective system is maintained up to 3 hours or more. The meso -β- scale cloud system exhibits characteristics of a multi-celled convective storm in which the meso-r-scale convective cells have lifetime of about 30 min. Pressure perturbation depicts a meso-low after a half hour in the low levels. As the cloud system evolves, the meso-low intensifies and extends to the upshear side and covers the entire domain in the mid-lower levels with the peak values of 5-8 hPa. Temperature perturbation depicts a warm region in the middle levels through the entire simulation period. The meso-r-scale warm cores with peak values of 4-8 ℃ are associated with strong convective cells. The cloud top evaporation causes a stronger cold layer around the cloud top levels.Simulation of microphysics exhibits that graupel is primarily concentrated in the strong convective cells forming the main source of convective rainfall after one hour of simulation time. Aggregates are mainly located in the stratiform region and decaying convective cells which produce the stratiform rainfall. Riming of the ice crystals is the predominant precipitation formation mechanism in the convection region, whereas aggregation of ice crystals is the predominant one in the stratiform region, which is consistent with observations. Sensitivity experiments of ice-phase mierophysical processes show that the microphysical structures of the convective cloud system can be simulated better with the diagnosed aggregation collection efficiencies.展开更多
A series of idealized model simulations are analyzed to determine the sensitivity of model results to different configurations of the lateral boundary conditions (LBCs) in simulating mesoscale shallow convection over ...A series of idealized model simulations are analyzed to determine the sensitivity of model results to different configurations of the lateral boundary conditions (LBCs) in simulating mesoscale shallow convection over hilly terrain. In the simulations with steady thermal forcing at the model surface, a radiation condition at both boundaries is the best choice under high wind conditions, and the best results are produced when both the normal velocities and the temperature are treated with the radiation scheme in which the phase speed is the same for different variables. When the background wind speed is reasonably small, the LBC configuration with either the radiation or the zero gradient condition at both boundaries tends to make the numerical solution unstable. The choice of a constant condition at the inflow boundary and a radiation outflow boundary condition is appropriate in most cases. In the simulations with diurnal thermal forcing at the model surface, different LBC schemes are combined together to reduce spurious signals induced by the outflow boundary. A specification inflow boundary condition, in which the velocity fields at the inflow boundary are provided using the time-dependent results of a simulation with periodic LBCs over a flat domain, is tested and the results indicate that the specification condition at the inflow boundary makes it possible to use a smaller model domain to obtain reasonable results. The model horizontal domain length should be greater than a critical length, which depends on the domain depth H and the angle between gravity wave phase lines and the vertical. An estimate of minimum domain length is given by , where N and U are the background stability and wind speed, respectively, Lx is the typical gravity wavelength scale, and Zi is the convective boundary layer (CBL) depth.展开更多
In this study, the reaction characteristics of reduction of calcined dolomite with ferrosilicon under argon flow to produce magnesium were studied by conducting experiments Pidgeon pellets were used to study the effec...In this study, the reaction characteristics of reduction of calcined dolomite with ferrosilicon under argon flow to produce magnesium were studied by conducting experiments Pidgeon pellets were used to study the effect of reduced temperature, argon flow, and reduced time on the conversion of calcined dolomite reduction by ferrosilicon. The results show that the conversion significantly increases with the increase in the reduction temperature and reduction time. The conversion first increases and then decreases with the increase in argon flow. The highest conversion was obtained when the argon flow rate was 3 L·min^(-1), and a nearly spherical shape, nanoscale magnesium powder was obtained. Then the characters of the circulating argon entrainment process were numerically studied by ANSYS Fluent 17. A physical model of multilayer pellet arrangement was established, and a numerical calculation model of chemical reaction, radiation, heat conduction, and convection heat transfer was constructed. This confirms that high-temperature argon can effectively strengthen the heat exchange between pellets, improve the heat transfer efficiency, and facilitate the pellets to react quickly. When the conversion is 80%, the production efficiency increased by about 28.6%. In addition, the magnesium production efficiency showed an increase tendency with the increase of the argon inlet flow rate.展开更多
Convection and its ensuing severe weather, such as heavy rainfall, hail, tornado, and high wind, have significant im- pacts on our society and economy (e.g., Cao et al., 2004; Fritsch and Carbone, 2004; Verbout et al...Convection and its ensuing severe weather, such as heavy rainfall, hail, tornado, and high wind, have significant im- pacts on our society and economy (e.g., Cao et al., 2004; Fritsch and Carbone, 2004; Verbout et al., 2006; Ashley and Black, 2008; Cao, 2008; Cao and Ma, 2009; Zhang et al., 2014). Due to its localized and transient nature, the initiation of convection or convective initiation remains one of the least understood aspects of convection in the scientific communi- ties, and it is a significant challenge to accurately predict the exact timing and location of convective initiation (e.g., Cai et al., 2006; Wilson and Roberts, 2006; Xue and Martin, 2006; Cao and Zhang, 2016).展开更多
This study is devoted to the numerical simulation of the artificial ground freezing process in a fluid-saturated rock mass of the potassium salt deposit. A coupled model of nonstationary thermal conductivity, filtrati...This study is devoted to the numerical simulation of the artificial ground freezing process in a fluid-saturated rock mass of the potassium salt deposit. A coupled model of nonstationary thermal conductivity, filtration and thermo-poroelasticity,which takes into account dependence of the physical properties on temperature and pressure, is proposed on the basis of the accepted hypotheses. The considered area is a cylinder with a depth of 256 meters and diameter of 26.5 meters and includes 13 layers with different thermophysical and filtration properties. Numerical simulation was carried out by the finite-element method. It has been shown that substantial ice wall formation occurs non-uniformly along the layers. This can be connected with geometry of the freezing wells and with difference in physical properties. The average width of the ice wall in each layer was calculated. It was demonstrated that two toroidal convective cells induced by thermogravitational convection were created from the very beginning of the freezing process. The effect of the constant seepage flow on the ice wall formation was investigated. It was shown that the presence of the slow flow lead to the delay in ice wall closure. In case of the flow with a velocity of more than 30 mm per day, closure of the ice wall was not observed at all in the foreseeable time.展开更多
基金Project (2011CB606302-1) supported by the National Basic Research Program of ChinaProject (2013AA031001) supported by Hi-Tech Research and Development Program of China
文摘A self-developed forced convection rheoforming (FCR) machine for the preparation of light alloy semisolid slurry was introduced. The microstructure characteristics of 7075 aluminium alloy semisolid slurry at different stirring speeds prepared by the FCR process were analyzed. The experimental results suggest that with the increase of the stirring speed, the mean grain size of the semisolid decreases and the shape factor as well as the number of primary grains increase. Meanwhile, the preparation process of semisolid slurry was numerically simulated. The flow characteristics of the melt in the device and the effect of the stirring speed on temperature field and solid fraction of the melt were investigated. The simulated results show that during the preparation process of semisolid slurry, there is a complex convection within the FCR device that obviously changes the temperature field distribution and solid fraction of the melt. When the convection intensity increases, the scope of the undercooling gradient of the melt is reduced and temperature distribution is improved.
文摘The Florida peninsula in the USA has a frequent occurrence of sea breeze(SB)thunderstorms.In this study,the numerical simulation of a Florida SB and its associated convective initiation(CI)is simulated using the mesoscale community Weather Research and Forecasting(WRF)model in one-way nested domains at different horizontal resolutions.Results are compared with observations to examine the accuracy of model-simulated SB convection and factors that influence SB CI within the simulation.It is found that the WRF model can realistically reproduce the observed SB CI.Differences are found in the timing,location,and intensity of the convective cells at different domains with various spatial resolutions.With increasing spatial resolution,the simulation improvements are manifested mainly in the timing of CI and the orientation of the convection after the sea breeze front(SBF)merger into the squall line over the peninsula.Diagnoses indicate that accurate representation of geophysical variables(e.g.,coastline and bay shape,small lakes measuring 10-30 km2),better resolved by the high resolution,play a significant role in improving the simulations.The geophysical variables,together with the high resolution,impact the location and timing of SB CI due to changes in low-level atmospheric convergence and surface sensible heating.More importantly,they enable Florida lakes(30 km2 and larger)to produce noticeable lake breezes(LBs)that collide with the SBFs to produce CI.Furthermore,they also help the model reproduce a stronger convective squall line caused by merging SBs,leading to more accurate locations of postfrontal convective systems.
文摘The present work relates to a numerical investigation of double diffusive mixed convection around a horizontal annulus with a finned inner cylinder.The solutal and thermal buoyancy forces are sustained by maintaining the inner and outer cylinders at uniform temperatures and concentrations.Buoyancy effects are also considered,with the Boussinesq approximation.The forced convection effect is induced by the outer cylinder rotating with an angular velocity(ω)in an anti-clockwise direction.The studies are made for various combinations of dimensionless numbers;buoyancy ratio number(N),Lewis number(Le),Richardson number(Ri)and Grashof number(Gr).The isotherms,isoconcentrations and streamlines as well as both average and local Nusselt and Sherwood numbers were studied.A finite volume scheme is adopted to solve the transport equations for continuity,momentum,energy and mass transfer.The results indicate that the use of fins on the inner cylinder with outer cylinder rotation,significantly improves the heat and mass transfer in the annulus.
文摘The analytical solution of the convection diffusion equation is considered by two-dimensional Fourier transform and the inverse Fourier transform. To get the numerical solution, the Crank-Nicolson finite difference method is constructed, which is second-order accurate in time and space. Numerical simulation shows excellent agreement with the analytical solution. The dynamic visualization of the simulating results is realized on ArcGIS platform. This work provides a quick and intuitive decision-making basis for water resources protection, especially in dealing with water pollution emergencies.
基金This work was financially supported by the National NSFC BaoSteel Conjunct Foun dation(No.50174031).
文摘A mathematical model coupling the momentum, energy and species conservation equa-tions was proposed to calculate the macro--segregation of Fe--C alloy ingot during solid-ification. The corresponding simulation software which concurrently solves the macro-scopic mass, momentum, energy and species conservation equations has been developedby applying the SIMPLE algorithm.The thermo--solutal convection in a NH_4 Cl--H_2O ingot is verified and the result showsgood agreement with that reported. Then macro--segregation in a steel ingot is simu-lated by using the developed program. The steel ingot is in a rectangular mold with ariser. The fluid flow is mainly induced by the temperature field and the solid fraction.The macro--segregation pattern is mainly affected by the thermo--induced convectionin the mushy zone. The negative segregation forms along the walls of the casting.The positive segregation forms at the top center of the casting into the riser. Thespecies concentration reaches the peak in the center of the ingot where solidificationends lastly.
基金the National Key R&D Program of China(No.2019YFC1905701)the National Natural Science Foundation of China(Nos.51674022,51734003)the Key projects of NSFC(No.U1960201).
文摘A 3D model applying temperature-and carbon concentration-dependent material properties was developed to describe the scrap melting behavior and carbon diffusion under natural convection.Simulated results agreed reasonably well with experimental ones.Scrap melting was subdivided into four stages:formation of a solidified layer,rapid melting of the solidified layer,carburization,and carburization+normal melting.The carburization stage could not be ignored at low temperature because the carburization time for the sample investigated was 214 s at 1573 K compared to 12 s at 1723 K.The thickness of the boundary layer with significant concentration difference at 1573 K increased from 130μm at 5 s to 140μm at 60 s.The maximum velocity caused by natural convection decreased from 0.029 m·s^(−1)at 5 s to 0.009 m·s^(−1)at 634 s because the differences in temperature and density between the molten metal and scrap decreased with time.
基金Supported by the National Natural Science Foundation of China (20490206, 20576133, 20676134) and Petro China.
文摘The Marangoni effect induced by mass transfer at the interface between two immiscible liquids displays important influence on laboratory and industrial operation of solvent extraction. A systematic numerical study of the two-dimensional Marangoni effect in a two liquid layer system was conducted. The linear relationship of the inter- facial tension versus the solute concentration was incorporated into a mathematical model accounting for liquid flow and mass transfer in both phases. The typical cases analyzed by Sternling & Scriven (AIChE J., 1959) using the linear instability theory were simulated bv the finite difference method and good agreement between the theory and the numerical simulation was observed. The simulation suggests that the Marangoni convection needs certain time to develop sufficiently in strength and scale to enhance the interphase mass transfer, the Marangoni effect is dynamic and transient, and remains at some stabilized level as long as the mass transfer driving force is kept con- stant. When certain level of shear is imposed at the interface as in most cases of practical significance, the Maran- goni effect is suppressed slightly but progressively as the shear is increased gradually. The present two-dimensional simulation of the Marangoni effect provides some insight into the underlying mechanism and also the basis for further theoretical study of the three-dimensional Marangoni effect in the real world and in chemical engineering applications.
基金the National Key R&D Program of China(Grant No.2016YFB0301100)Anhui Provincial Natural Science Foundation of China(Grant No.1808085QE152).
文摘The silicothermic reduction of magnesium was investigated by the non-isothermal thermoanalysis in flowing argon,while the traditional investigations of silicothermic process for magnesium reduction were carried out under vacuum conditions.Firstly,the thermal gravimetric(TG)and derivative thermogravimetric(DTG)characteristic of briquettes prepared with calcined dolomite,ferrosilicon and fluorite were characterized by the thermogravimetric analyzer(TGA)at different heating rates.The intrinsic chemical kinetic mechanism was identified as a formal chemical reaction with the Nth order type which showed apparent activation energy E and reaction order n were 290.168 kJ mol^(-1) and 1.076,respectively.Then,a novel technique of magnesium production without vacuum was put forward and a three-dimensional unsteady numerical model incorporating the chemical reaction,radiation,heat conduction and heat convection was established and simulated,which was verified by Pidgeon process and novel tech no logy.rIhe nu merical results showed that the cycle time of the novel technique could be reduced when the argon temperature was higher than 1343 K and the argon entrance velocity was over 0.05 m s^(-1).And the effect of the argon temperature on reduction degree was much larger than that of entrance velocity.
基金This study was supportedjointly by the Chinese Academy of Sciences Key AspectsProgram for Knowledge Innovation Project(KZCX2-203)and the National Natural Science Foundation of China un-der Grant No.40035010.
文摘The NCC T63L20 model of the National Climate Center, China Meteorological Administration is employed to simulate the 1998 summer flood, which mainly occurred in the region of the Yangtze River and Northeast China. For this study, two kinds of cumulus convection parameterized schemes are employed in this model respectively. The simulations show that the Gregory parameterized scheme, which is still used in the United Kingdom Meteorological Office routine model, simulates more reasonable rainfall amount and distribution compared to the Kuo-type scheme. Moreover, the Gregory scheme better simulates the tendency of general circulation than the Kuo-type scheme. On the whole, the Gregory scheme provides a good simulation of the main features of the seasonal precipitation and general circulation in China, although the simulated result still exhibits some departures from the observations.
基金financial support provided by National Natural Science Foundation of China(21978243)。
文摘A multiphase flow 3D numerical simulation method employing the coupled volume of fluid(VOF)and level set model is established to study the reactive absorption of CO_(2)by the monoethanolamine(MEA)aqueous solution in a falling film microchannel.Based on the flow-reaction-mass transfer model of the MEA-CO_(2)system in the falling film microchannel,the enhancement effect of the Marangoni convection in this reactive absorption process is analyzed.The enhancement factor of the Marangoni convection obtained in this work is in good agreement with experimental results in the literature.With consideration of the absorption ratio as well as the enhancement effect of the Marangoni convection,the influence of different MEA concentrations on absorption of CO_(2)is investigated.Furthermore,the appropriate MEA concentration for absorption enhanced by the Marangoni convection is acquired.
基金Project supported by the Major State Basic Research Program of China (No.G1999032803)the National Tackling Key Problems Program (No.20050200069)the National Natural Science Foundation of China (Nos.10372052, 10271066)the Doctoral Foundation of Ministry of Education of China (No.20030422047).
文摘For the three-dimensional convection-dominated problem of dynamics of fluids in porous media, the second order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward. Fractional steps techniques are needed to convert a multi-dimensional problem into a series of successive one-dimensional problems. Some techniques, such as calculus of variations, energy method, multiplicative commutation rule of difference operators, decomposition of high order difference operators, and the theory of prior estimates are adopted. Optimal order estimates are derived to determine the error in the second order approximate solution. These methods have already been applied to the numerical simulation of migration-accumulation of oil resources and predicting the consequences of seawater intrusion and protection projects.
基金supported by the National Natural Science Foundatin of China (Grant No. 50676112)
文摘Numerical simulations of flow in the melt(CdZnTe) with different conditions are conducted using the finite-difference method.When the top surface of the melt is solid wall under microgravity condition,the thermocapillary convection is caused in the melt by the surface tension gradient on the free surface.As the Marangoni number is small,the flow is steady thermocapillary convection.As the Marangoni number exceeds the critical value,the steady flow transits into unstable thermocapillary convection.When the top surface of the melt is free surface under microgravity,two roll cells are observed in the melt,which are driven by both the surface tension gradients on the upper and lower free surfaces.When the top surface of the melt is free surface under gravity condition,the effect of the buoyancy on the flow is little as the Marangoni number is small.With the Marangoni number increasing,the effect of the buoyancy increases,which makes the upper roll cell weaken and the lower roll cell strengthen.
基金supported by the National Natural Science Foundation of China (Grant No. 41504079)the China National Special Fund for Earthquake Scientific Research in Public Interest (Grant No. 201308011)
文摘Based on the recent observations about the movement and rheological structure of the lithosphere and deformation pattern of the crust, we developed a three-dimensional finite element model for the northeastern margin of the Tibetan Plateau.The model considered the impacts of both external and internal conditions, including mantle convection, gravitational potential energy and block interactions. We compared the simulated surface movement rates to the observed GPS velocities, and the results revealed that crustal movement gradually decreased toward the edge of the plateau. The factors controlling this pattern are the interactions of adjacent blocks, gravitational potential energy of the plateau, and also mantle convection as well. Additionally,according to the observation that there was an apparent difference between the horizontal movement rate of the lithosphere and convective velocity of the underlying mantle, and also based on the results of seismic anisotropy studies that suggest different strengths and deformation regimes of the lithosphere in different tectonic blocks, we proposed that the impact of mantle convection on the lithosphere may have varied in space, and introduced a parameter named mantle convection intensity factor in numerical simulations. Our simulation results show consistent surface movement rates with GPS observations, which further supports the viewpoint of seismic anisotropy studies, i.e., the degree of coupling between the crust and mantle varies significantly among different blocks.
基金the National Natural Science Foundation of China (496742 4140 0 740 3 9) and the Research Fund forthe Doctoral Program of Higher Education in China
文摘THe effects of strong convection electric field on the electron density in the auroral ionosphericF-region have been simulated numerically by means of a physical model. It is found that an enhancement of electric field directed west-northward in post-noon or west-southward in pre-noon results in an ionization depletion with its maximum at altitudes 40–50 km higher than that of theF 2 peak. When the enhanced electric field lasts for 45 min and has a maximum about 32 mV/m, the resulted ionization depletions reach their maximum at the time just ~10 min behind the time when the convection electric field and ion temperature enhancements reach their maximum. This is consistent well with EISCAT observations. The magnitudes of the percentage ionization depletions and their recovery time are dependent not only on the intensity of the electric field, but also on the diurnal variation phase of the background electron density.
文摘In this paper, a close relationship between the intraseasonal variation of subtropical high over East Asia and the convective activities around the South China Sea and the Philippines is analysed from OLR data.This relationship is studied by using the theory of wave propagating in a slowly varying medium and by using a quasi-geoslrophic, linear, spherical model and the IAP-GCM, respectively. The results show that when the SST is warming around the western tropical Pacific or the Philippines, the convective activities are intensified around the Philippines. As a consequence, the subtropical high will be intensified over East Asia. The computed results also show that when the anomaly of convective activities are caused around the Philippines, a teleconnection pattern of circulation anomalies will be caused over South Asia, East Asia and North America.
文摘Numerical simulation of meso-β-scale convective cloud systems associated with a PRE-STORM MCC case has been carried out using a 2-D version of the CSU Regional Atmospheric Modeling System (RAMS) nonhydrostatic model with parameterized microphysics. It is found that the predicted meso-r-scale convective phenomena arc basically unsteady under the situation of strong shear at low-levels, while the meso-β-scale convective system is maintained up to 3 hours or more. The meso -β- scale cloud system exhibits characteristics of a multi-celled convective storm in which the meso-r-scale convective cells have lifetime of about 30 min. Pressure perturbation depicts a meso-low after a half hour in the low levels. As the cloud system evolves, the meso-low intensifies and extends to the upshear side and covers the entire domain in the mid-lower levels with the peak values of 5-8 hPa. Temperature perturbation depicts a warm region in the middle levels through the entire simulation period. The meso-r-scale warm cores with peak values of 4-8 ℃ are associated with strong convective cells. The cloud top evaporation causes a stronger cold layer around the cloud top levels.Simulation of microphysics exhibits that graupel is primarily concentrated in the strong convective cells forming the main source of convective rainfall after one hour of simulation time. Aggregates are mainly located in the stratiform region and decaying convective cells which produce the stratiform rainfall. Riming of the ice crystals is the predominant precipitation formation mechanism in the convection region, whereas aggregation of ice crystals is the predominant one in the stratiform region, which is consistent with observations. Sensitivity experiments of ice-phase mierophysical processes show that the microphysical structures of the convective cloud system can be simulated better with the diagnosed aggregation collection efficiencies.
基金The first author was supported by an Overseas Research ScholarshipThis work was supported by the National Natural Science Foundation of China under Grant No.40233031.
文摘A series of idealized model simulations are analyzed to determine the sensitivity of model results to different configurations of the lateral boundary conditions (LBCs) in simulating mesoscale shallow convection over hilly terrain. In the simulations with steady thermal forcing at the model surface, a radiation condition at both boundaries is the best choice under high wind conditions, and the best results are produced when both the normal velocities and the temperature are treated with the radiation scheme in which the phase speed is the same for different variables. When the background wind speed is reasonably small, the LBC configuration with either the radiation or the zero gradient condition at both boundaries tends to make the numerical solution unstable. The choice of a constant condition at the inflow boundary and a radiation outflow boundary condition is appropriate in most cases. In the simulations with diurnal thermal forcing at the model surface, different LBC schemes are combined together to reduce spurious signals induced by the outflow boundary. A specification inflow boundary condition, in which the velocity fields at the inflow boundary are provided using the time-dependent results of a simulation with periodic LBCs over a flat domain, is tested and the results indicate that the specification condition at the inflow boundary makes it possible to use a smaller model domain to obtain reasonable results. The model horizontal domain length should be greater than a critical length, which depends on the domain depth H and the angle between gravity wave phase lines and the vertical. An estimate of minimum domain length is given by , where N and U are the background stability and wind speed, respectively, Lx is the typical gravity wavelength scale, and Zi is the convective boundary layer (CBL) depth.
基金supported by Key Program of the National Natural Science Foundation of China (Grant No.92062223)the National Natural Science Foundation of China (Grant No.51804277)Anhui University Natural Science Research Project (KJ20190048)。
文摘In this study, the reaction characteristics of reduction of calcined dolomite with ferrosilicon under argon flow to produce magnesium were studied by conducting experiments Pidgeon pellets were used to study the effect of reduced temperature, argon flow, and reduced time on the conversion of calcined dolomite reduction by ferrosilicon. The results show that the conversion significantly increases with the increase in the reduction temperature and reduction time. The conversion first increases and then decreases with the increase in argon flow. The highest conversion was obtained when the argon flow rate was 3 L·min^(-1), and a nearly spherical shape, nanoscale magnesium powder was obtained. Then the characters of the circulating argon entrainment process were numerically studied by ANSYS Fluent 17. A physical model of multilayer pellet arrangement was established, and a numerical calculation model of chemical reaction, radiation, heat conduction, and convection heat transfer was constructed. This confirms that high-temperature argon can effectively strengthen the heat exchange between pellets, improve the heat transfer efficiency, and facilitate the pellets to react quickly. When the conversion is 80%, the production efficiency increased by about 28.6%. In addition, the magnesium production efficiency showed an increase tendency with the increase of the argon inlet flow rate.
文摘Convection and its ensuing severe weather, such as heavy rainfall, hail, tornado, and high wind, have significant im- pacts on our society and economy (e.g., Cao et al., 2004; Fritsch and Carbone, 2004; Verbout et al., 2006; Ashley and Black, 2008; Cao, 2008; Cao and Ma, 2009; Zhang et al., 2014). Due to its localized and transient nature, the initiation of convection or convective initiation remains one of the least understood aspects of convection in the scientific communi- ties, and it is a significant challenge to accurately predict the exact timing and location of convective initiation (e.g., Cai et al., 2006; Wilson and Roberts, 2006; Xue and Martin, 2006; Cao and Zhang, 2016).
基金supported by the Russian Science Foundation (Grant No. 17-11-01204)
文摘This study is devoted to the numerical simulation of the artificial ground freezing process in a fluid-saturated rock mass of the potassium salt deposit. A coupled model of nonstationary thermal conductivity, filtration and thermo-poroelasticity,which takes into account dependence of the physical properties on temperature and pressure, is proposed on the basis of the accepted hypotheses. The considered area is a cylinder with a depth of 256 meters and diameter of 26.5 meters and includes 13 layers with different thermophysical and filtration properties. Numerical simulation was carried out by the finite-element method. It has been shown that substantial ice wall formation occurs non-uniformly along the layers. This can be connected with geometry of the freezing wells and with difference in physical properties. The average width of the ice wall in each layer was calculated. It was demonstrated that two toroidal convective cells induced by thermogravitational convection were created from the very beginning of the freezing process. The effect of the constant seepage flow on the ice wall formation was investigated. It was shown that the presence of the slow flow lead to the delay in ice wall closure. In case of the flow with a velocity of more than 30 mm per day, closure of the ice wall was not observed at all in the foreseeable time.