Three-dimensional quasi-direct numerical simulations have been performed to investigate a thermal plasma reactor with a counterflow jet. The effects of the momentum flux ratio and distance between the counterflow jet ...Three-dimensional quasi-direct numerical simulations have been performed to investigate a thermal plasma reactor with a counterflow jet. The effects of the momentum flux ratio and distance between the counterflow jet and the thermal plasma jet on the flow characteristics are addressed. The numerical results show that the dimensionless location of the stagnation layer is significantly affected by the momentum flux ratio, but it is not dependent on the distance.Specifically, the stagnation layer is closer to the plasma torch outlet with the increase of the momentum flux ratio. Furthermore, the flow regimes of the stagnation layer and the flow characteristics of the thermal plasma jet are closely related to the momentum flux ratio. The characteristic frequencies associated with the different regimes are identified. The deflecting oscillation flow regimes are found when the momentum flux ratio is low, which provokes axial velocity fluctuations inside the thermal plasma jet. By contrast, for cases with a high momentum flux ratio, flapping flow regimes are distinguished. The thermal plasma jets are very stable and the axial velocity fluctuations mainly exist in the stagnation layer.展开更多
Slurry jets in a static uniform environment were simulated with a two-phase mixture model in which flow-particle interactions were considered. A standard k-e turbulence model was chosen to close the governing equation...Slurry jets in a static uniform environment were simulated with a two-phase mixture model in which flow-particle interactions were considered. A standard k-e turbulence model was chosen to close the governing equations. The computational results were in agreement with previous laboratory measurements. The characteristics of the two-phase flow field and the influences of hydraulic and geometric parameters on the distribution of the slurry jets were analyzed on the basis of the computational results. The calculated results reveal that if the initial velocity of the slurry jet is high, the jet spreads less in the radial direction. When the slurry jet is less influenced by the ambient fluid (when the Stokes number St is relatively large), the turbulent kinetic energy k and turbulent dissipation rate e, which are relatively concentrated around the jet axis, decrease more rapidly after the slurry jet passes through the nozzle. For different values of St, the radial distributions of streamwise velocity and particle volume fraction are both self-similar and fit a Gaussian profile after the slurry jet fully develops. The decay rate of the particle velocity is lower than that of water velocity along the jet axis, and the axial distributions of the centerline particle streamwise velocity are self-similar along the jet axis. The pattern of particle dispersion depends on the Stokes number St. When St = 0.39, the panicle dispersion along the radial direction is considerable, and the relative velocity is very low due to the low dynamic response time. When St = 3.08, the dispersion of particles along the radial direction is very little, and most of the particles have high relative velocities along the streamwise direction.展开更多
In order to improve the benefits of base bleed in base flow field,the base flow with hot base bleed for two jet models is studied.Twodimensional axisymmetric Navier-Stokes equations are computed by using a finite volu...In order to improve the benefits of base bleed in base flow field,the base flow with hot base bleed for two jet models is studied.Twodimensional axisymmetric Navier-Stokes equations are computed by using a finite volume scheme.The base flow of a cylinder afterbody with base bleed is simulated.The simulation results are validated with the experimental data,and the experimental results are well reproduced.On this basis,the base flow fields with base bleed for a circular jet model and an annulus jet model are investigated by selecting the injection temperature from 830 K to 2200 K.The results show that the base pressure of the annular jet model is higher than that of the circular jet model with the changes of the injection parameter and the injection temperature.For the circular jet model,the hot gases are concentrated in the vicinity of the base.For the annular jet model,the bleed gases flow into the shear layer directly so that the hot gases are concentrated in the shear layer.The latter temperature distribution is better for the increase of base pressure.展开更多
A kind of direct numerical simulation method suitable for supercritical carbon dioxide jet flow has been discussed in this paper. The form of dimensionless nonconservative compressible Navier-Stokes equations in a two...A kind of direct numerical simulation method suitable for supercritical carbon dioxide jet flow has been discussed in this paper. The form of dimensionless nonconservative compressible Navier-Stokes equations in a two-dimensional cartesian coordinate system is derived in detail. High accurate finite difference compact schemes based on non-uniform grid system are introduced to solve the equations. The simulation results of the three vortex pairing phenomenon of plane mixing layer and a compressible axisymmetric jet flow field show that the discussed numerical simulation method is feasible to calculate the supercritical carbon dioxide jet fluid. And it is found that the difficulties of splitting the convective terms in conservation Navier-Stokes equations, which are brought by the supercritical carbon dioxide fluid pressure state equation, can be avoided by solving the nonconservative compressible Navier-Stokes equations.展开更多
Jet interaction effects on aerodynamic characteristics of aircraft in subsonic/transonic compressible crossflow are investigated numerically. The high reliable CFD method is established and compared with existing expe...Jet interaction effects on aerodynamic characteristics of aircraft in subsonic/transonic compressible crossflow are investigated numerically. The high reliable CFD method is established and compared with existing experimental results. The lateral jet interaction characteristics of lateral jet in subsonic/ transonic compressible crossflow on an ogive-cylinder configuration are simulated numerically. Variation characteristics of normal force amplification factor, pitching moment and amplification factor are analyzed and compared with the results at supersonic condition. Research results and some useful conclusions can be provided for the design of RCS aircraft control system as basis and reference in subsonic/transonic compressible crossflow.展开更多
Shock wave/boundary layer interaction in a 24°turning angle of the compression ramp at Mach number 2.9 controlled by steady microjet is investigated using direct numerical simulation.Three different jet spacings ...Shock wave/boundary layer interaction in a 24°turning angle of the compression ramp at Mach number 2.9 controlled by steady microjet is investigated using direct numerical simulation.Three different jet spacings which are termed as sparse,moderate and dense are considered,and the induced vortex system and shock structures are compared.A moderate jet spacing configuration is found to generate counter-rotating vortex pairs that transport high-momentum fluid towards the vicinity of wall and strengthen the boundary layer to resist separation,reducing the separation region.The dense jet spacing configuration creates a larger momentum deficit region,reducing the friction downstream of the corner.Analysis of pressure and pressure gradient reveals that dense jet spacing configuration reduces the intensity of separation shock.The impact of varying jet spacings on the turbulent kinetic energy transport mechanism is also investigated by decomposing the budget terms in the transport equation.Furthermore,the spectral characteristics of the separation region are studied using power spectral density and dynamic mode decomposition methods,revealing that moderate jet spacing configuration suppresses low-frequency fluctuations in the separation region.展开更多
Because of the complication of turbulence's mechanism and law as well as the jet pressure in nozzle is difficult to test by experiment, five turbulent models were applied to numerically simulate the turbulent flow fi...Because of the complication of turbulence's mechanism and law as well as the jet pressure in nozzle is difficult to test by experiment, five turbulent models were applied to numerically simulate the turbulent flow field in convergent-divergent nozzle. Theory analysis and experiment results of mass flow rates conclude that the RNG k-ε model is the most suitable model. The pressure distribution in the convergent-divergent nozzle was revealed by computational fluid dynamic (CFD) simulating on the turbulent flow field under different pressure conditions. The growing conditions of cavitation bubbles were shown; meanwhile, the phenomena in the experiment could be explained. The differential pres- sure between the upstream and downstream in nozzle throat section can improve the cavitating effect of cavitation water jet.展开更多
To develop vortex generator jet (VGJ) method for flow control, the turbulence flow in a 14° conical diffuser with and without vortex generator jets are simulated by solving Navier-Stokes equations with k-ε tur...To develop vortex generator jet (VGJ) method for flow control, the turbulence flow in a 14° conical diffuser with and without vortex generator jets are simulated by solving Navier-Stokes equations with k-ε turbulence model. The diffuser performance, based on different velocity ratio (ratio of the jet speed to the mainstream velocity), is investigated and compared with the experimental study. On the basis of the flow characteristics using computation fluid dynamics (CFD) method observed in the conical diffuser and the downstream development of the longitudinal vortices, attempt is made to correlate the pressure recovery coefficient with the behavior of vortices produced by vortex generator jets.展开更多
In order to improve the engineering performance of a novel hydraulic shock generator, the fluid flow inside its complex passages is numerically investigated. The effects of the inlet flow velocity upon the turbulenc...In order to improve the engineering performance of a novel hydraulic shock generator, the fluid flow inside its complex passages is numerically investigated. The effects of the inlet flow velocity upon the turbulence intensity of the jet flow are analyzed. The calculated pressure loss is experimentally verified with the consideration of temperature determined viscosity shifting. The results are used as the reference in the further development of the hydraulic shock generator展开更多
Flow and heat transfer characteristics of slot jets impingement to a cylindrical convex surface are numerically investigated.Suitable turbulence models have been determined through comparison with the experimental dat...Flow and heat transfer characteristics of slot jets impingement to a cylindrical convex surface are numerically investigated.Suitable turbulence models have been determined through comparison with the experimental data.Flow structures are described and impingement heat transfer characteristics are discussed.The effects of Re,H/B and D/B on single-slot jets impingement heat transfer are analyzed and heat transfer characteristics of multiple-slot jets are investigated.The results show that:Gas flows along the convex surface and boundary layer separation occurs in both single and multiple-slot jets impingement.A maximum stagnation Nu appears at H/B=8 and the local Nu decreases with increasing H/B in the region far away from the stagnation.The Nu in the stagnation region decreases with increasing D/B but the Nu is nearly the same in the region far away from the stagnation.Pressure gradient is an important factor on heat transfer enhancement.Correlations of the Num for single-slot,double-slot and quadric-slot jets impinging on a convex surface are obtained.It indicates the effects of Re and D/B on Num could become more important in less slot jets impingement.展开更多
In this paper, Numerical simulations of mean velocity and turbulent kinetic energy fields are presented for three-dimensional lateral jet in crossflow, at the injection angles of -60° and -30 °. The RNG κ- ...In this paper, Numerical simulations of mean velocity and turbulent kinetic energy fields are presented for three-dimensional lateral jet in crossflow, at the injection angles of -60° and -30 °. The RNG κ- ε turbulence model, with the two-layer wall function method, is adopted to simulate the characteristics of this flow at the jet-to-crossflow velocity ratios, 1, 2 and 4. The results show that the injection angle and jet-to-crossflow velocity ratio can change the flow fields, and the range upstream affected by jet injected laterally increase and the curvature of jet trajectories varies along the flow direction. Furthermore, the separation events in the lee of the jet exit and behind the jet bending-segment have been found, and the mechanisms of two vortex systems are analyzed.展开更多
The mutual relationships of three effective factors, the diameter D/d (d is the diameter of exit) of obstructed plate, exit densimetric Froude number and the distance Hid of the plate from jet orifice for obstructed...The mutual relationships of three effective factors, the diameter D/d (d is the diameter of exit) of obstructed plate, exit densimetric Froude number and the distance Hid of the plate from jet orifice for obstructed buoyant jet in static ambient, are analyzed to explain normal and abnormal rounded flowing (reverberated and bifurcated flowing). The critical Froude numbers for obstructed buoyant jets with H/d=2, 4, 6, 8 which distinguished normal and abnormal flowing pattern are obtained. Normal rounded flowing is found only for a plate under a special value of H/d. A fitted formula of critical Froude numbers with H/d and D/d is presented to distinguish rounded flowing types. The occurring of reverberated or bifurcated flowing in abnormal rounded flow is analyzed. Based on the results of obstructed buoyant jets with D/d=1, normal rounded flowing occurred only for all conditions and axial dilution behind the plate under different H/D is obtained.展开更多
Ultrafine rare-earth oxides(REOs) are widely applied in all fields of daily life,but the conventional preparation methods are limited by a long procedure,low efficiency and severe environmental pollution.Our team has ...Ultrafine rare-earth oxides(REOs) are widely applied in all fields of daily life,but the conventional preparation methods are limited by a long procedure,low efficiency and severe environmental pollution.Our team has independently developed a jet pyrolysis reactor for the preparation of ultrafine cerium oxides,and this process has theoretical significance and practical application values.In this study,gas-solid pyrolysis reactions inside the jet-flow pyrolysis reactor were numerically simulated.We performed a coupling computation of the combustion,phase transformation and gas-solid reaction on Fluent and userdefined functions.We characterized the flows of different phases as well as the compositions and distributive laws of the reactants/products in the reactor.The gas-phase inlet velocity and dynamic pressure/additional pressure were related by a quadratic function.The velocity at the throat inlet changed the most,and the outlet velocity was very stable.The CeO2 concentrations were obviously stratified.This study enriches theories of jet-flow pyrolysis and theoretically underlies the optimization and popularization of self-developed pyrolysis reactors.展开更多
This work carried out liquid-solid two-phase jet experiments and simulations to study the erosion behavior of 304 stainless steel at 30° impingement.The single-phase impinging jet was simulated using dense grid b...This work carried out liquid-solid two-phase jet experiments and simulations to study the erosion behavior of 304 stainless steel at 30° impingement.The single-phase impinging jet was simulated using dense grid by one-way coupling of solid phase due to its dilute distribution.The simulation results agreed well with experiments.It was found that after impinging particle attrition occurred and particles became round with decreasing length-ratio and particle breakage occurred along the "long" direction.Both experiment and simulations found that the erosion generated on the sample could be divided into three regions that were nominated as stagnant region,cutting transition region and wall jet region.Most particle-wall impacts were found to occur in the cutting transition region and the wall jet region.In the cutting transition region,holes and lip-shaped hogbacks were generated in the same direction as the flow imping.In the wall jet region,furrows and grooves were generated.The averaged grooves depth tended to become constant with the progress of impinging and reach the steady state of erosion in the end.In addition,it was found that impinging effect increased erosion and anti-wear rate.展开更多
In the present paper, the flow field of dual rectangular jets was numerically simulated by solving the full Reynolds averaged Navier Stokes equations , where the RNG k ε model and the finite volume method were ...In the present paper, the flow field of dual rectangular jets was numerically simulated by solving the full Reynolds averaged Navier Stokes equations , where the RNG k ε model and the finite volume method were used. The flow structure in dual rectangular jets and the effects of the velocity were investigated. The numerical results agree qualitatively with the experimental data.展开更多
The primary issue regarding the plasma synthetic jet actuator(PSJA)is its performance attenuation at high frequencies.To solve this issue,a self-supplementing,dual-cavity,plasma synthetic jet actuator(SD-PSJA)is desig...The primary issue regarding the plasma synthetic jet actuator(PSJA)is its performance attenuation at high frequencies.To solve this issue,a self-supplementing,dual-cavity,plasma synthetic jet actuator(SD-PSJA)is designed,and the static properties of the SD-PSJA are investigated through experiments and numerical simulations.The pressure measurement shows that the SD-PSJA has two saturation frequencies(1200 Hz and 2100 Hz),and the experimental results show that both the saturation frequencies decrease as the volume of the bottom cavity of the SD-PSJA increases.As the size of the supplement hole increases,the first saturation frequency increases continuously,while the second saturation frequency shows a trend of first decreasing and then increasing.Numerical simulations show that the working process of the SD-PSJA is similar to that of the PSJA,but the volume of the cavity in the SD-PSJA is smaller than that of the PSJA;the SD-PSJA can supplement air to the top cavity through two holes,thus reducing the refresh time and effectively improving the jet intensity of the actuator at high frequencies.展开更多
This paper reviews recent progress made toward modeling of cavitation and numerical simulation of cavitating water jets. Properties of existing cavitation models are discussed and a compressible mixture flow method fo...This paper reviews recent progress made toward modeling of cavitation and numerical simulation of cavitating water jets. Properties of existing cavitation models are discussed and a compressible mixture flow method for the numerical simulation of high- speed water jets accompanied by intensive cavitation is introduced. Two-phase fluids media of cavitating flow are treated as a homo- geneous bubbly mixture and the mean flow is computed by solving Reynolds-Averaged Navier-Stokes (RANS) equations for com- pressible fluid. The intensity of cavitation is evaluated by the gas volume fraction, which is governed by the compressibility of bubble-liquid mixture corresponding to the status of mean flow field. Numerical results of cavitating water jet issuing from an orifice nozzle are presented and its applicability to intensively cavitating jets is demonstrated. However, the effect of impact pressure caused by collapsing of bubbles is neglected, and effectively coupling of the present compressible mixture flow method with the dynamics of bubbles remains to be a challenge.展开更多
The purpose of the present study was to establish a passive flow control method for a rectangular jet using two types of deflectors installed symmetrically inside a nozzle. This deflector in a rectangular nozzle gener...The purpose of the present study was to establish a passive flow control method for a rectangular jet using two types of deflectors installed symmetrically inside a nozzle. This deflector in a rectangular nozzle generates the rectangular coaxial jets. The effect of the slant angle of the deflectors on the flow characteristics and the spread of the rectangular jet was investigated experimentally and by large-eddy simulation. The experiment and the numerical simulation were carried out at a Reynolds number of 9000. The rectangular jet with no deflectors generates a vortex ring from the nozzle exit. The vortex ring collapses in the downstream region and the outline of the jet changes from rectangular to diamond-shaped as a result of the axis-switching phenomenon. The rectangular jet with divergent and convergent deflectors shows particularly noticeable changes in the flow characteristics and vortical structures, as compared to the case with no deflectors. In the case of the rectangular jet with divergent deflectors (slant angle of <i style="font-family:" font-size:13.3333px;white-space:normal;"="">α</i><span style="font-family:" font-size:13.3333px;white-space:normal;"=""> = 6<span style="white-space:nowrap;">°</span>), minor axis spread is promoted more than major axis spread, and axis switching occurs closer to the nozzle exit than that in the case of no deflectors. The outline of the jet also changes from lateral rectangular to vertical rectangular as a result of axis switching. On the other hand, in the case of a rectangular jet with convergent deflectors (</span><i style="font-family:" font-size:13.3333px;white-space:normal;"="">α</i><span style="font-family:" font-size:13.3333px;white-space:normal;"=""> = -6<span style="white-space:nowrap;">°</span>), minor axis spread is suppressed more than major axis spread, and axis switching occurs farther from the nozzle exit than that in the case with no deflectors. The outline of the jet does not change until the downstream region. Therefore, the spread and the axis-switching location for the rectangular jet can be controlled by the deflectors inside the rectangular nozzle.</span>展开更多
Direct numerical simulation(DNS)of turbulent planar jet with a second-order chemical reaction(A+B→R)is performed to investigate the processes of mixing and chemical reactions in spatially developing turbulent free sh...Direct numerical simulation(DNS)of turbulent planar jet with a second-order chemical reaction(A+B→R)is performed to investigate the processes of mixing and chemical reactions in spatially developing turbulent free shear flows.Reactant A is premixed into the jet flow,and reactant B is premixed into the ambient flow.DNS is performed at three different Damk¨ohler numbers(Da=0.1,1,and 10).Damk¨ohler number is a ratio of a time scale of a flow to that of chemical reactions,and in this study,the large Da means a fast chemical reaction,and the small Da means a slow chemical reaction.The visualization of velocity field shows that the jet flow is developed by entraining the ambient fluid.The visualization of concentration of reactant A shows that concentration of reactant A for Da=1 and 10 becomes very small in the downstream region because the chemical reaction consumes the reactants and reactant A is diffused with the jet development.By comparison of the profiles of chemical reaction rate and concentration of product R,it is found that product R for Da=10 is produced by the chemical reaction at the interface between the jet and the ambient fluids and is diffused into the jet flow,whereas product R for Da=0.1 is produced in the jet flow after reactants A and B are well mixed.展开更多
The erosion of loose beds by submerged circular impinging vertical turbulent jets is simulated using an Eulerian two-phase model which implements Euler-Euler coupled governing equations for fluid and solid phases, and...The erosion of loose beds by submerged circular impinging vertical turbulent jets is simulated using an Eulerian two-phase model which implements Euler-Euler coupled governing equations for fluid and solid phases, and a modified k-ε turbulence closure for the fluid phase. Both flow-particle and particle-particle interactions are considered in this model. The predictions of eroded bed profiles agree well with previous laboratory measurements and self-designed experiments. Analysis of the simulated results reveals that the velocity field of the jet water varies with various scouring intensities, that the scour depth and shape are mainly influenced by the driving force of the water when the density, diameter and porosity of the sand are the same, and that the porosity is an important contributor to sediment erosion. In this study, the scour depth, the height of dune and the velocity of the pore water increase with increasing porosity.展开更多
基金supported by National Natural Science Foundation of China (Nos. 12035015 and 12105282)。
文摘Three-dimensional quasi-direct numerical simulations have been performed to investigate a thermal plasma reactor with a counterflow jet. The effects of the momentum flux ratio and distance between the counterflow jet and the thermal plasma jet on the flow characteristics are addressed. The numerical results show that the dimensionless location of the stagnation layer is significantly affected by the momentum flux ratio, but it is not dependent on the distance.Specifically, the stagnation layer is closer to the plasma torch outlet with the increase of the momentum flux ratio. Furthermore, the flow regimes of the stagnation layer and the flow characteristics of the thermal plasma jet are closely related to the momentum flux ratio. The characteristic frequencies associated with the different regimes are identified. The deflecting oscillation flow regimes are found when the momentum flux ratio is low, which provokes axial velocity fluctuations inside the thermal plasma jet. By contrast, for cases with a high momentum flux ratio, flapping flow regimes are distinguished. The thermal plasma jets are very stable and the axial velocity fluctuations mainly exist in the stagnation layer.
基金supported by the National Natural Science Foundation of China (Grant No. 11172218)the Fundamental Research Funds for the Central Universities (Grant No. 2012206020209)
文摘Slurry jets in a static uniform environment were simulated with a two-phase mixture model in which flow-particle interactions were considered. A standard k-e turbulence model was chosen to close the governing equations. The computational results were in agreement with previous laboratory measurements. The characteristics of the two-phase flow field and the influences of hydraulic and geometric parameters on the distribution of the slurry jets were analyzed on the basis of the computational results. The calculated results reveal that if the initial velocity of the slurry jet is high, the jet spreads less in the radial direction. When the slurry jet is less influenced by the ambient fluid (when the Stokes number St is relatively large), the turbulent kinetic energy k and turbulent dissipation rate e, which are relatively concentrated around the jet axis, decrease more rapidly after the slurry jet passes through the nozzle. For different values of St, the radial distributions of streamwise velocity and particle volume fraction are both self-similar and fit a Gaussian profile after the slurry jet fully develops. The decay rate of the particle velocity is lower than that of water velocity along the jet axis, and the axial distributions of the centerline particle streamwise velocity are self-similar along the jet axis. The pattern of particle dispersion depends on the Stokes number St. When St = 0.39, the panicle dispersion along the radial direction is considerable, and the relative velocity is very low due to the low dynamic response time. When St = 3.08, the dispersion of particles along the radial direction is very little, and most of the particles have high relative velocities along the streamwise direction.
基金supported by National Nature Science Foundation of China(Grant No.51176076)
文摘In order to improve the benefits of base bleed in base flow field,the base flow with hot base bleed for two jet models is studied.Twodimensional axisymmetric Navier-Stokes equations are computed by using a finite volume scheme.The base flow of a cylinder afterbody with base bleed is simulated.The simulation results are validated with the experimental data,and the experimental results are well reproduced.On this basis,the base flow fields with base bleed for a circular jet model and an annulus jet model are investigated by selecting the injection temperature from 830 K to 2200 K.The results show that the base pressure of the annular jet model is higher than that of the circular jet model with the changes of the injection parameter and the injection temperature.For the circular jet model,the hot gases are concentrated in the vicinity of the base.For the annular jet model,the bleed gases flow into the shear layer directly so that the hot gases are concentrated in the shear layer.The latter temperature distribution is better for the increase of base pressure.
文摘A kind of direct numerical simulation method suitable for supercritical carbon dioxide jet flow has been discussed in this paper. The form of dimensionless nonconservative compressible Navier-Stokes equations in a two-dimensional cartesian coordinate system is derived in detail. High accurate finite difference compact schemes based on non-uniform grid system are introduced to solve the equations. The simulation results of the three vortex pairing phenomenon of plane mixing layer and a compressible axisymmetric jet flow field show that the discussed numerical simulation method is feasible to calculate the supercritical carbon dioxide jet fluid. And it is found that the difficulties of splitting the convective terms in conservation Navier-Stokes equations, which are brought by the supercritical carbon dioxide fluid pressure state equation, can be avoided by solving the nonconservative compressible Navier-Stokes equations.
文摘Jet interaction effects on aerodynamic characteristics of aircraft in subsonic/transonic compressible crossflow are investigated numerically. The high reliable CFD method is established and compared with existing experimental results. The lateral jet interaction characteristics of lateral jet in subsonic/ transonic compressible crossflow on an ogive-cylinder configuration are simulated numerically. Variation characteristics of normal force amplification factor, pitching moment and amplification factor are analyzed and compared with the results at supersonic condition. Research results and some useful conclusions can be provided for the design of RCS aircraft control system as basis and reference in subsonic/transonic compressible crossflow.
基金Supported by the National Natural Science Foundation of China(Nos.11972064,92052104)the Key Laboratory of Computational Aerodynamics,AVIC Aerodynamics Research Institute,China(No.YL2022XFX0405)the Fundamental Research Funds for the Central Universities,China.
文摘Shock wave/boundary layer interaction in a 24°turning angle of the compression ramp at Mach number 2.9 controlled by steady microjet is investigated using direct numerical simulation.Three different jet spacings which are termed as sparse,moderate and dense are considered,and the induced vortex system and shock structures are compared.A moderate jet spacing configuration is found to generate counter-rotating vortex pairs that transport high-momentum fluid towards the vicinity of wall and strengthen the boundary layer to resist separation,reducing the separation region.The dense jet spacing configuration creates a larger momentum deficit region,reducing the friction downstream of the corner.Analysis of pressure and pressure gradient reveals that dense jet spacing configuration reduces the intensity of separation shock.The impact of varying jet spacings on the turbulent kinetic energy transport mechanism is also investigated by decomposing the budget terms in the transport equation.Furthermore,the spectral characteristics of the separation region are studied using power spectral density and dynamic mode decomposition methods,revealing that moderate jet spacing configuration suppresses low-frequency fluctuations in the separation region.
基金Supported by the National Natural Science Foundation of China (50621403,50604019)Program for New Century Excellent Talents in Univer sity(NCET-06-0767)
文摘Because of the complication of turbulence's mechanism and law as well as the jet pressure in nozzle is difficult to test by experiment, five turbulent models were applied to numerically simulate the turbulent flow field in convergent-divergent nozzle. Theory analysis and experiment results of mass flow rates conclude that the RNG k-ε model is the most suitable model. The pressure distribution in the convergent-divergent nozzle was revealed by computational fluid dynamic (CFD) simulating on the turbulent flow field under different pressure conditions. The growing conditions of cavitation bubbles were shown; meanwhile, the phenomena in the experiment could be explained. The differential pres- sure between the upstream and downstream in nozzle throat section can improve the cavitating effect of cavitation water jet.
基金This project is supported by Scientific Research Foundation of Ministry of Education of China for Returnee.
文摘To develop vortex generator jet (VGJ) method for flow control, the turbulence flow in a 14° conical diffuser with and without vortex generator jets are simulated by solving Navier-Stokes equations with k-ε turbulence model. The diffuser performance, based on different velocity ratio (ratio of the jet speed to the mainstream velocity), is investigated and compared with the experimental study. On the basis of the flow characteristics using computation fluid dynamics (CFD) method observed in the conical diffuser and the downstream development of the longitudinal vortices, attempt is made to correlate the pressure recovery coefficient with the behavior of vortices produced by vortex generator jets.
基金This project is supported by National Natural Science Foundation of China! (59835160).
文摘In order to improve the engineering performance of a novel hydraulic shock generator, the fluid flow inside its complex passages is numerically investigated. The effects of the inlet flow velocity upon the turbulence intensity of the jet flow are analyzed. The calculated pressure loss is experimentally verified with the consideration of temperature determined viscosity shifting. The results are used as the reference in the further development of the hydraulic shock generator
文摘Flow and heat transfer characteristics of slot jets impingement to a cylindrical convex surface are numerically investigated.Suitable turbulence models have been determined through comparison with the experimental data.Flow structures are described and impingement heat transfer characteristics are discussed.The effects of Re,H/B and D/B on single-slot jets impingement heat transfer are analyzed and heat transfer characteristics of multiple-slot jets are investigated.The results show that:Gas flows along the convex surface and boundary layer separation occurs in both single and multiple-slot jets impingement.A maximum stagnation Nu appears at H/B=8 and the local Nu decreases with increasing H/B in the region far away from the stagnation.The Nu in the stagnation region decreases with increasing D/B but the Nu is nearly the same in the region far away from the stagnation.Pressure gradient is an important factor on heat transfer enhancement.Correlations of the Num for single-slot,double-slot and quadric-slot jets impinging on a convex surface are obtained.It indicates the effects of Re and D/B on Num could become more important in less slot jets impingement.
文摘In this paper, Numerical simulations of mean velocity and turbulent kinetic energy fields are presented for three-dimensional lateral jet in crossflow, at the injection angles of -60° and -30 °. The RNG κ- ε turbulence model, with the two-layer wall function method, is adopted to simulate the characteristics of this flow at the jet-to-crossflow velocity ratios, 1, 2 and 4. The results show that the injection angle and jet-to-crossflow velocity ratio can change the flow fields, and the range upstream affected by jet injected laterally increase and the curvature of jet trajectories varies along the flow direction. Furthermore, the separation events in the lee of the jet exit and behind the jet bending-segment have been found, and the mechanisms of two vortex systems are analyzed.
基金Project supported by the National Natural Science Foundation of China (No.50479038)
文摘The mutual relationships of three effective factors, the diameter D/d (d is the diameter of exit) of obstructed plate, exit densimetric Froude number and the distance Hid of the plate from jet orifice for obstructed buoyant jet in static ambient, are analyzed to explain normal and abnormal rounded flowing (reverberated and bifurcated flowing). The critical Froude numbers for obstructed buoyant jets with H/d=2, 4, 6, 8 which distinguished normal and abnormal flowing pattern are obtained. Normal rounded flowing is found only for a plate under a special value of H/d. A fitted formula of critical Froude numbers with H/d and D/d is presented to distinguish rounded flowing types. The occurring of reverberated or bifurcated flowing in abnormal rounded flow is analyzed. Based on the results of obstructed buoyant jets with D/d=1, normal rounded flowing occurred only for all conditions and axial dilution behind the plate under different H/D is obtained.
基金financially supported by the National Natural Science Foundation of China (No.51904069)the Natural Science Foundation of Hebei Province of China (No.E2019501085)+2 种基金the Colleges and Universities in Hebei Province Science and Technology Research Youth Fund (No.QN2019312)the Fundamental Research Funds for the Central Universities (No.N172303012)the National Science and Technology Support Program (No.2012BAE01B02)
文摘Ultrafine rare-earth oxides(REOs) are widely applied in all fields of daily life,but the conventional preparation methods are limited by a long procedure,low efficiency and severe environmental pollution.Our team has independently developed a jet pyrolysis reactor for the preparation of ultrafine cerium oxides,and this process has theoretical significance and practical application values.In this study,gas-solid pyrolysis reactions inside the jet-flow pyrolysis reactor were numerically simulated.We performed a coupling computation of the combustion,phase transformation and gas-solid reaction on Fluent and userdefined functions.We characterized the flows of different phases as well as the compositions and distributive laws of the reactants/products in the reactor.The gas-phase inlet velocity and dynamic pressure/additional pressure were related by a quadratic function.The velocity at the throat inlet changed the most,and the outlet velocity was very stable.The CeO2 concentrations were obviously stratified.This study enriches theories of jet-flow pyrolysis and theoretically underlies the optimization and popularization of self-developed pyrolysis reactors.
基金supported by National Natural Science Foundation of China (Nos.5177622551876221)+1 种基金High-end Foreign Expert Introduction Project (G20190001270B18054)。
文摘This work carried out liquid-solid two-phase jet experiments and simulations to study the erosion behavior of 304 stainless steel at 30° impingement.The single-phase impinging jet was simulated using dense grid by one-way coupling of solid phase due to its dilute distribution.The simulation results agreed well with experiments.It was found that after impinging particle attrition occurred and particles became round with decreasing length-ratio and particle breakage occurred along the "long" direction.Both experiment and simulations found that the erosion generated on the sample could be divided into three regions that were nominated as stagnant region,cutting transition region and wall jet region.Most particle-wall impacts were found to occur in the cutting transition region and the wall jet region.In the cutting transition region,holes and lip-shaped hogbacks were generated in the same direction as the flow imping.In the wall jet region,furrows and grooves were generated.The averaged grooves depth tended to become constant with the progress of impinging and reach the steady state of erosion in the end.In addition,it was found that impinging effect increased erosion and anti-wear rate.
文摘In the present paper, the flow field of dual rectangular jets was numerically simulated by solving the full Reynolds averaged Navier Stokes equations , where the RNG k ε model and the finite volume method were used. The flow structure in dual rectangular jets and the effects of the velocity were investigated. The numerical results agree qualitatively with the experimental data.
基金National Natural Science Foundation of China(No.61971345)the Foundation for Key Laboratories of National Defense Science and Technology of China(No.614220120030810).
文摘The primary issue regarding the plasma synthetic jet actuator(PSJA)is its performance attenuation at high frequencies.To solve this issue,a self-supplementing,dual-cavity,plasma synthetic jet actuator(SD-PSJA)is designed,and the static properties of the SD-PSJA are investigated through experiments and numerical simulations.The pressure measurement shows that the SD-PSJA has two saturation frequencies(1200 Hz and 2100 Hz),and the experimental results show that both the saturation frequencies decrease as the volume of the bottom cavity of the SD-PSJA increases.As the size of the supplement hole increases,the first saturation frequency increases continuously,while the second saturation frequency shows a trend of first decreasing and then increasing.Numerical simulations show that the working process of the SD-PSJA is similar to that of the PSJA,but the volume of the cavity in the SD-PSJA is smaller than that of the PSJA;the SD-PSJA can supplement air to the top cavity through two holes,thus reducing the refresh time and effectively improving the jet intensity of the actuator at high frequencies.
基金supported by the Japan Society for the Promotion of Science (JSPS), Grant-in-Aid for Scientific Research (C) (Grant No. 22560177)
文摘This paper reviews recent progress made toward modeling of cavitation and numerical simulation of cavitating water jets. Properties of existing cavitation models are discussed and a compressible mixture flow method for the numerical simulation of high- speed water jets accompanied by intensive cavitation is introduced. Two-phase fluids media of cavitating flow are treated as a homo- geneous bubbly mixture and the mean flow is computed by solving Reynolds-Averaged Navier-Stokes (RANS) equations for com- pressible fluid. The intensity of cavitation is evaluated by the gas volume fraction, which is governed by the compressibility of bubble-liquid mixture corresponding to the status of mean flow field. Numerical results of cavitating water jet issuing from an orifice nozzle are presented and its applicability to intensively cavitating jets is demonstrated. However, the effect of impact pressure caused by collapsing of bubbles is neglected, and effectively coupling of the present compressible mixture flow method with the dynamics of bubbles remains to be a challenge.
文摘The purpose of the present study was to establish a passive flow control method for a rectangular jet using two types of deflectors installed symmetrically inside a nozzle. This deflector in a rectangular nozzle generates the rectangular coaxial jets. The effect of the slant angle of the deflectors on the flow characteristics and the spread of the rectangular jet was investigated experimentally and by large-eddy simulation. The experiment and the numerical simulation were carried out at a Reynolds number of 9000. The rectangular jet with no deflectors generates a vortex ring from the nozzle exit. The vortex ring collapses in the downstream region and the outline of the jet changes from rectangular to diamond-shaped as a result of the axis-switching phenomenon. The rectangular jet with divergent and convergent deflectors shows particularly noticeable changes in the flow characteristics and vortical structures, as compared to the case with no deflectors. In the case of the rectangular jet with divergent deflectors (slant angle of <i style="font-family:" font-size:13.3333px;white-space:normal;"="">α</i><span style="font-family:" font-size:13.3333px;white-space:normal;"=""> = 6<span style="white-space:nowrap;">°</span>), minor axis spread is promoted more than major axis spread, and axis switching occurs closer to the nozzle exit than that in the case of no deflectors. The outline of the jet also changes from lateral rectangular to vertical rectangular as a result of axis switching. On the other hand, in the case of a rectangular jet with convergent deflectors (</span><i style="font-family:" font-size:13.3333px;white-space:normal;"="">α</i><span style="font-family:" font-size:13.3333px;white-space:normal;"=""> = -6<span style="white-space:nowrap;">°</span>), minor axis spread is suppressed more than major axis spread, and axis switching occurs farther from the nozzle exit than that in the case with no deflectors. The outline of the jet does not change until the downstream region. Therefore, the spread and the axis-switching location for the rectangular jet can be controlled by the deflectors inside the rectangular nozzle.</span>
基金supported by Grants-in-Aid(Nos.22360077 and 23656134)from the Japanese Ministry of Education,Culture,Sports,Science and Technology.
文摘Direct numerical simulation(DNS)of turbulent planar jet with a second-order chemical reaction(A+B→R)is performed to investigate the processes of mixing and chemical reactions in spatially developing turbulent free shear flows.Reactant A is premixed into the jet flow,and reactant B is premixed into the ambient flow.DNS is performed at three different Damk¨ohler numbers(Da=0.1,1,and 10).Damk¨ohler number is a ratio of a time scale of a flow to that of chemical reactions,and in this study,the large Da means a fast chemical reaction,and the small Da means a slow chemical reaction.The visualization of velocity field shows that the jet flow is developed by entraining the ambient fluid.The visualization of concentration of reactant A shows that concentration of reactant A for Da=1 and 10 becomes very small in the downstream region because the chemical reaction consumes the reactants and reactant A is diffused with the jet development.By comparison of the profiles of chemical reaction rate and concentration of product R,it is found that product R for Da=10 is produced by the chemical reaction at the interface between the jet and the ambient fluids and is diffused into the jet flow,whereas product R for Da=0.1 is produced in the jet flow after reactants A and B are well mixed.
基金supported by the National Basic Research Program of China ("973" Program) (Grant No. 2007CB714106)the National Natural Science Foundation of China (Grant Nos. 51079106, 10972163)
文摘The erosion of loose beds by submerged circular impinging vertical turbulent jets is simulated using an Eulerian two-phase model which implements Euler-Euler coupled governing equations for fluid and solid phases, and a modified k-ε turbulence closure for the fluid phase. Both flow-particle and particle-particle interactions are considered in this model. The predictions of eroded bed profiles agree well with previous laboratory measurements and self-designed experiments. Analysis of the simulated results reveals that the velocity field of the jet water varies with various scouring intensities, that the scour depth and shape are mainly influenced by the driving force of the water when the density, diameter and porosity of the sand are the same, and that the porosity is an important contributor to sediment erosion. In this study, the scour depth, the height of dune and the velocity of the pore water increase with increasing porosity.