The supercritical carbon dioxide (SC-CO2) jet can break rocks at higher penetration rates and lower threshold pressures than the water jet. The abrasive SC-CO2 jet, formed by adding solid particles into the SC-CO2 j...The supercritical carbon dioxide (SC-CO2) jet can break rocks at higher penetration rates and lower threshold pressures than the water jet. The abrasive SC-CO2 jet, formed by adding solid particles into the SC-CO2 jet, is expected to achieve higher operation efficiency in eroding hard rocks and cutting metals. With the computational fluid dynamics numerical simulation method, the characteristics of the flow field of the abrasive SC-CO2 jet are analyzed, as well as the main influencing factors. Results show that the two-phase axial velocities of the abrasive SC-CO2 jet is much higher than those of the abrasive water jet, when the pressure difference across the jet nozzle is held constant at 20 MPa, the optimal standoff distance for the largest particle impact velocity is approximately 5 times of the jet nozzle diameter; the fluid temperature and the volume concentration of the abrasive particles have modest influences on the two-phase velocities, the ambient pressure has a negligible influence when the pressure difference is held constant. Therefore the abrasive SC-CO2 jet is expected to assure more effective erosion and cutting performance. This work can provide guidance for subsequent lab experiments and promote practical applications.展开更多
Block-flexure toppling failure is frequently encountered in interbedded anti-inclined rock(IAR)slopes,and seriously threatens the construction of hydropower infrastructure.In this study,we first investigated the Lean ...Block-flexure toppling failure is frequently encountered in interbedded anti-inclined rock(IAR)slopes,and seriously threatens the construction of hydropower infrastructure.In this study,we first investigated the Lean Reservoir area’s geological setting and the Linda landslide’s characteristics.Then,uniform design and random design were used to design 110 training datasets and 31 testing datasets,respectively.Afterwards,the toppling response was obtained by using the discrete element code.Finally,support vector regression was used to obtain the influence weights of 21 impact factors.The results show that the influence weight of the slope angle and rock formation dip angle on the toppling deformation among tertiary impact factors is 25.96%and 17.28%,respectively,which are much greater than the other 19 impact factors within the research range.For the primary impact factors,the influence weight is sorted from large to small as slope geometry parameters,joints parameters,and rock mechanics parameters.Joints parameters,especially the geometric parameters,cannot be ignored when evaluating the stability of IAR slopes.Through numerical simulation,it was qualitatively determined that failure surfaces of slopes were controlled by cross joints and that the rocks in the slope toe play a role in preventing slope deformation.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51304226)the National Key Basic Research Development Program of China(973 Program,Grant No.2014CB239203)
文摘The supercritical carbon dioxide (SC-CO2) jet can break rocks at higher penetration rates and lower threshold pressures than the water jet. The abrasive SC-CO2 jet, formed by adding solid particles into the SC-CO2 jet, is expected to achieve higher operation efficiency in eroding hard rocks and cutting metals. With the computational fluid dynamics numerical simulation method, the characteristics of the flow field of the abrasive SC-CO2 jet are analyzed, as well as the main influencing factors. Results show that the two-phase axial velocities of the abrasive SC-CO2 jet is much higher than those of the abrasive water jet, when the pressure difference across the jet nozzle is held constant at 20 MPa, the optimal standoff distance for the largest particle impact velocity is approximately 5 times of the jet nozzle diameter; the fluid temperature and the volume concentration of the abrasive particles have modest influences on the two-phase velocities, the ambient pressure has a negligible influence when the pressure difference is held constant. Therefore the abrasive SC-CO2 jet is expected to assure more effective erosion and cutting performance. This work can provide guidance for subsequent lab experiments and promote practical applications.
基金supported by the National Key Scientific Instrument and Equipment Development Projects of China(No.41827808)the Major Program of the National Natural Science Foundation of China(No.42090055).
文摘Block-flexure toppling failure is frequently encountered in interbedded anti-inclined rock(IAR)slopes,and seriously threatens the construction of hydropower infrastructure.In this study,we first investigated the Lean Reservoir area’s geological setting and the Linda landslide’s characteristics.Then,uniform design and random design were used to design 110 training datasets and 31 testing datasets,respectively.Afterwards,the toppling response was obtained by using the discrete element code.Finally,support vector regression was used to obtain the influence weights of 21 impact factors.The results show that the influence weight of the slope angle and rock formation dip angle on the toppling deformation among tertiary impact factors is 25.96%and 17.28%,respectively,which are much greater than the other 19 impact factors within the research range.For the primary impact factors,the influence weight is sorted from large to small as slope geometry parameters,joints parameters,and rock mechanics parameters.Joints parameters,especially the geometric parameters,cannot be ignored when evaluating the stability of IAR slopes.Through numerical simulation,it was qualitatively determined that failure surfaces of slopes were controlled by cross joints and that the rocks in the slope toe play a role in preventing slope deformation.