期刊文献+
共找到123篇文章
< 1 2 7 >
每页显示 20 50 100
Improving the Short-Range Precipitation Forecast of Numerical Weather Prediction through a Deep Learning-Based Mask Approach
1
作者 Jiaqi ZHENG Qing LING +1 位作者 Jia LI Yerong FENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第8期1601-1613,共13页
Due to various technical issues,existing numerical weather prediction(NWP)models often perform poorly at forecasting rainfall in the first several hours.To correct the bias of an NWP model and improve the accuracy of ... Due to various technical issues,existing numerical weather prediction(NWP)models often perform poorly at forecasting rainfall in the first several hours.To correct the bias of an NWP model and improve the accuracy of short-range precipitation forecasting,we propose a deep learning-based approach called UNet Mask,which combines NWP forecasts with the output of a convolutional neural network called UNet.The UNet Mask involves training the UNet on historical data from the NWP model and gridded rainfall observations for 6-hour precipitation forecasting.The overlap of the UNet output and the NWP forecasts at the same rainfall threshold yields a mask.The UNet Mask blends the UNet output and the NWP forecasts by taking the maximum between them and passing through the mask,which provides the corrected 6-hour rainfall forecasts.We evaluated UNet Mask on a test set and in real-time verification.The results showed that UNet Mask outperforms the NWP model in 6-hour precipitation prediction by reducing the FAR and improving CSI scores.Sensitivity tests also showed that different small rainfall thresholds applied to the UNet and the NWP model have different effects on UNet Mask's forecast performance.This study shows that UNet Mask is a promising approach for improving rainfall forecasting of NWP models. 展开更多
关键词 deep learning numerical weather prediction(nwp) 6-hour quantitative precipitation forecast
下载PDF
A Forecast Error Correction Method in Numerical Weather Prediction by Using Recent Multiple-time Evolution Data 被引量:3
2
作者 薛海乐 沈学顺 丑纪范 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第5期1249-1259,共11页
The initial value error and the imperfect numerical model are usually considered as error sources of numerical weather prediction (NWP). By using past multi-time observations and model output, this study proposes a ... The initial value error and the imperfect numerical model are usually considered as error sources of numerical weather prediction (NWP). By using past multi-time observations and model output, this study proposes a method to estimate imperfect numerical model error. This method can be inversely estimated through expressing the model error as a Lagrange interpolation polynomial, while the coefficients of polyno- mial are determined by past model performance. However, for practical application in the full NWP model, it is necessary to determine the following criteria: (1) the length of past data sufficient for estimation of the model errors, (2) a proper method of estimating the term "model integration with the exact solution" when solving the inverse problem, and (3) the extent to which this scheme is sensitive to the observational errors. In this study, such issues are resolved using a simple linear model, and an advection diffusion model is applied to discuss the sensitivity of the method to an artificial error source. The results indicate that the forecast errors can be largely reduced using the proposed method if the proper length of past data is chosen. To address the three problems, it is determined that (1) a few data limited by the order of the corrector can be used, (2) trapezoidal approximation can be employed to estimate the "term" in this study; however, a more accurate method should be explored for an operational NWP model, and (3) the correction is sensitive to observational error. 展开更多
关键词 numerical weather prediction past data model error inverse problem
下载PDF
System of Multigrid Nonlinear Least-squares Four-dimensional Variational Data Assimilation for Numerical Weather Prediction(SNAP):System Formulation and Preliminary Evaluation 被引量:1
3
作者 Hongqin ZHANG Xiangjun TIAN +1 位作者 Wei CHENG Lipeng JIANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2020年第11期1267-1284,共18页
A new forecasting system-the System of Multigrid Nonlinear Least-squares Four-dimensional Variational(NLS-4DVar)Data Assimilation for Numerical Weather Prediction(SNAP)-was established by building upon the multigrid N... A new forecasting system-the System of Multigrid Nonlinear Least-squares Four-dimensional Variational(NLS-4DVar)Data Assimilation for Numerical Weather Prediction(SNAP)-was established by building upon the multigrid NLS-4DVar data assimilation scheme,the operational Gridpoint Statistical Interpolation(GSI)−based data-processing and observation operators,and the widely used Weather Research and Forecasting numerical model.Drawing upon lessons learned from the superiority of the operational GSI analysis system,for its various observation operators and the ability to assimilate multiple-source observations,SNAP adopts GSI-based data-processing and observation operator modules to compute the observation innovations.The multigrid NLS-4DVar assimilation framework is used for the analysis,which can adequately correct errors from large to small scales and accelerate iteration solutions.The analysis variables are model state variables,rather than the control variables adopted in the conventional 4DVar system.Currently,we have achieved the assimilation of conventional observations,and we will continue to improve the assimilation of radar and satellite observations in the future.SNAP was evaluated by case evaluation experiments and one-week cycling assimilation experiments.In the case evaluation experiments,two six-hour time windows were established for assimilation experiments and precipitation forecasts were verified against hourly precipitation observations from more than 2400 national observation sites.This showed that SNAP can absorb observations and improve the initial field,thereby improving the precipitation forecast.In the one-week cycling assimilation experiments,six-hourly assimilation cycles were run in one week.SNAP produced slightly lower forecast RMSEs than the GSI 4DEnVar(Four-dimensional Ensemble Variational)as a whole and the threat scores of precipitation forecasts initialized from the analysis of SNAP were higher than those obtained from the analysis of GSI 4DEnVar. 展开更多
关键词 data assimilation numerical weather prediction NLS-4DVar MULTIGRID GSI
下载PDF
Parameterized Forward Operators for Simulation and Assimilation of Polarimetric Radar Data with Numerical Weather Predictions
4
作者 Guifu ZHANG Jidong GAO Muyun DU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第5期737-754,共18页
Many weather radar networks in the world have now provided polarimetric radar data(PRD)that have the potential to improve our understanding of cloud and precipitation microphysics,and numerical weather prediction(NWP)... Many weather radar networks in the world have now provided polarimetric radar data(PRD)that have the potential to improve our understanding of cloud and precipitation microphysics,and numerical weather prediction(NWP).To realize this potential,an accurate and efficient set of polarimetric observation operators are needed to simulate and assimilate the PRD with an NWP model for an accurate analysis of the model state variables.For this purpose,a set of parameterized observation operators are developed to simulate and assimilate polarimetric radar data from NWP model-predicted hydrometeor mixing ratios and number concentrations of rain,snow,hail,and graupel.The polarimetric radar variables are calculated based on the T-matrix calculation of wave scattering and integrations of the scattering weighted by the particle size distribution.The calculated polarimetric variables are then fitted to simple functions of water content and volumeweighted mean diameter of the hydrometeor particle size distribution.The parameterized PRD operators are applied to an ideal case and a real case predicted by the Weather Research and Forecasting(WRF)model to have simulated PRD,which are compared with existing operators and real observations to show their validity and applicability.The new PRD operators use less than one percent of the computing time of the old operators to complete the same simulations,making it efficient in PRD simulation and assimilation usage. 展开更多
关键词 forward operators polarimetric radar data data assimilation numerical weather prediction
下载PDF
Current Status and Future Challenges of Weather Radar Polarimetry: Bridging the Gap between Radar Meteorology/Hydrology/Engineering and Numerical Weather Prediction 被引量:10
5
作者 Guifu ZHANG Vivek N.MAHALE +25 位作者 Bryan J.PUTNAM Youcun QI Qing CAO ANDrew D.BYRD Petar BUKOVCIC Dusan S.ZRNIC Jidong GAO Ming XUE Youngsun JUNG Heather D.REEVES Pamela L.HEINSELMAN AlexANDer RYZHKOV Robert D.PALMER Pengfei ZHANG Mark WEBER Greg M.MCFARQUHAR Berrien MOORE III Yan ZHANG Jian ZHANG J.VIVEKANANDAN Yasser AL-RASHID Richard L.ICE Daniel S.BERKOWITZ Chong-chi TONG Caleb FULTON Richard J.DOVIAK 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第6期571-588,共18页
After decades of research and development, the WSR-88 D(NEXRAD) network in the United States was upgraded with dual-polarization capability, providing polarimetric radar data(PRD) that have the potential to improve we... After decades of research and development, the WSR-88 D(NEXRAD) network in the United States was upgraded with dual-polarization capability, providing polarimetric radar data(PRD) that have the potential to improve weather observations,quantification, forecasting, and warnings. The weather radar networks in China and other countries are also being upgraded with dual-polarization capability. Now, with radar polarimetry technology having matured, and PRD available both nationally and globally, it is important to understand the current status and future challenges and opportunities. The potential impact of PRD has been limited by their oftentimes subjective and empirical use. More importantly, the community has not begun to regularly derive from PRD the state parameters, such as water mixing ratios and number concentrations, used in numerical weather prediction(NWP) models.In this review, we summarize the current status of weather radar polarimetry, discuss the issues and limitations of PRD usage, and explore potential approaches to more efficiently use PRD for quantitative precipitation estimation and forecasting based on statistical retrieval with physical constraints where prior information is used and observation error is included. This approach aligns the observation-based retrievals favored by the radar meteorology community with the model-based analysis of the NWP community. We also examine the challenges and opportunities of polarimetric phased array radar research and development for future weather observation. 展开更多
关键词 weather RADAR POLARIMETRY RADAR METEOROLOGY numerical weather prediction data ASSIMILATION MICROPHYSICS parameterization forward operator
下载PDF
An approach to estimating and extrapolating model error based on inverse problem methods:towards accurate numerical weather prediction 被引量:4
6
作者 胡淑娟 邱春雨 +3 位作者 张利云 黄启灿 于海鹏 丑纪范 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第8期669-677,共9页
Model error is one of the key factors restricting the accuracy of numerical weather prediction (NWP). Considering the continuous evolution of the atmosphere, the observed data (ignoring the measurement error) can ... Model error is one of the key factors restricting the accuracy of numerical weather prediction (NWP). Considering the continuous evolution of the atmosphere, the observed data (ignoring the measurement error) can be viewed as a series of solutions of an accurate model governing the actual atmosphere. Model error is represented as an unknown term in the accurate model, thus NWP can be considered as an inverse problem to uncover the unknown error term. The inverse problem models can absorb long periods of observed data to generate model error correction procedures. They thus resolve the deficiency and faultiness of the NWP schemes employing only the initial-time data. In this study we construct two inverse problem models to estimate and extrapolate the time-varying and spatial-varying model errors in both the historical and forecast periods by using recent observations and analogue phenomena of the atmosphere. Numerical experiment on Burgers' equation has illustrated the substantial forecast improvement using inverse problem algorithms. The proposed inverse problem methods of suppressing NWP errors will be useful in future high accuracy applications of NWP. 展开更多
关键词 numerical weather prediction model error past data inverse problem
下载PDF
基于机器学习的NWP ZTD长短期预测模型
7
作者 白子仪 徐莹 +2 位作者 冯健 于浩 张方照 《导航定位学报》 CSCD 北大核心 2024年第4期34-44,共11页
对流层延迟是影响全球卫星导航系统(GNSS)定位精度的主要误差源之一,利用数值天气预报(NWP)模型估计天顶对流层延迟(ZTD)是常用的方法之一,但NWP模型预报资料估计的ZTD精度有限;NWP模型再分析资料估计的ZTD不能用于GNSS实时定位,且目前... 对流层延迟是影响全球卫星导航系统(GNSS)定位精度的主要误差源之一,利用数值天气预报(NWP)模型估计天顶对流层延迟(ZTD)是常用的方法之一,但NWP模型预报资料估计的ZTD精度有限;NWP模型再分析资料估计的ZTD不能用于GNSS实时定位,且目前大多数文献未能对ZTD长短期预测分别进行研究。因此,利用欧洲中期天气预报中心(ECMWF)的第五代全球气候再分析资料数据集(ERA5)和国际GNSS服务组织(IGS)的高精度ZTD数据,研究基于反向传播(BP)神经网络、支持向量机和长短期记忆网络3种机器学习算法构建以年为时间窗口的ZTD长期预测模型和以24h为时间窗口的ZTD短期预测模型的可行性。实验结果表明:构建的ZTD长期预测模型和短期预测模型可以有效提高预测ZTD的精度。 展开更多
关键词 全球卫星导航系统(GNSS) 天顶对流层延迟(ZTD) 数值天气预报(nwp) 机器学习算法 预测模型
下载PDF
Insights into the Microwave Instruments Onboard the Fengyun 3D Satellite:Data Quality and Assimilation in the Met Office NWP System 被引量:4
8
作者 Fabien CARMINATI Nigel ATKINSON +1 位作者 Brett CANDY Qifeng LU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第8期1379-1396,共18页
This paper evaluates the microwave instruments onboard the latest Chinese polar-orbiting satellite, Fengyun 3D (FY- 3D). Comparing three months of observations from the Microwave Temperature Sounder 2 (MWTS-2), the Mi... This paper evaluates the microwave instruments onboard the latest Chinese polar-orbiting satellite, Fengyun 3D (FY- 3D). Comparing three months of observations from the Microwave Temperature Sounder 2 (MWTS-2), the Microwave Humidity Sounder 2 (MWHS-2), and the Microwave Radiation Imager (MWRI) to Met Office short-range forecasts, we characterize the instrumental biases, show how those biases have changed with respect to their predecessors onboard FY- 3C, and how they compare to the Advanced Technology Microwave Sounder (ATMS) onboard NOAA-20 and the Global Precipitation Measurement Microwave Imager (GMI). The MWTS-2 global bias is much reduced with respect to its predecessor and compares well to ATMS at equivalent channel frequencies, differing only by 0.36 ± 0.28 K (1σ) on average. A suboptimal averaging of raw digital counts is found to cause an increase in striping noise and an ascending- descending bias. MWHS-2 benefits from a new calibration method improving the 183-GHz humidity channels with respect to its predecessor and biases for these channels are within ± 1.9 K to ATMS. MWRI presents the largest improvements, with reduced global bias and standard deviation with respect to FY-3C;although, spurious, seemingly transient, brightness temperatures have been detected in the observations at 36.5 GHz (vertical polarization). The strong solar-dependent bias that affects the instrument on FY-3C has been reduced to less than 0.2 K on average for FY-3D MWRI. Experiments where radiances from these instruments were assimilated on top of a full global system demonstrated a neutral to positive impact on the forecasts, as well as on the fit to the background of independent instruments. 展开更多
关键词 microwave remote sensing numerical weather prediction data assimilation
下载PDF
All-sky Data Assimilation of MWTS-2 and MWHS-2 in the Met Office Global NWP System. 被引量:2
9
作者 Fabien CARMINATI Stefano MIGLIORINI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第10期1682-1694,共13页
Microwave radiances from passive polar-orbiting radiometers have been,until recently,assimilated in the Met Office global numerical weather prediction system after the scenes significantly affected by atmospheric scat... Microwave radiances from passive polar-orbiting radiometers have been,until recently,assimilated in the Met Office global numerical weather prediction system after the scenes significantly affected by atmospheric scattering are discarded.Recent system upgrades have seen the introduction of a scattering-permitting observation operator and the development of a variable observation error using both liquid and ice water paths as proxies of scattering-induced bias.Applied to the Fengyun 3 Microwave Temperature Sounder 2(MWTS-2)and the Microwave Humidity Sounder 2(MWHS-2),this methodology increases the data usage by up to 8%at 183 GHz.It also allows for the investigation into the assimilation of MWHS-2118 GHz channels,sensitive to temperature and lower tropospheric humidity,but whose large sensitivity to ice cloud have prevented their use thus far.While the impact on the forecast is mostly neutral with small but significant short-range improvements,0.3%in terms of root mean square error,for southern winds and low-level temperature,balanced by 0.2%degradations of short-range northern and tropical low-level temperature,benefits are observed in the background fit of independent instruments used in the system.The lower tropospheric temperature sounding Infrared Atmospheric Sounding Interferometer(IASI)channels see a reduction of the standard deviation in the background departure of up to 1.2%.The Advanced Microwave Sounding Unit A(AMSU-A)stratospheric sounding channels improve by up to 0.5%and the Microwave Humidity Sounder(MHS)humidity sounding channels improve by up to 0.4%. 展开更多
关键词 microwave remote sensing numerical weather prediction data assimilation Fengyun 3
下载PDF
数值预报中气象卫星资料同化前处理技术进展
10
作者 马刚 黄静 +5 位作者 巩欣亚 希爽 薛蕾 李娟 张鹏 龚建东 《应用气象学报》 CSCD 北大核心 2024年第2期142-155,共14页
在数值天气预报变分同化中,利用同化前处理将卫星资料完成有效信息优选、资料拼接和稀疏化、初级通道选择、下边界参数耦合等处理,实现卫星资料同化对数值天气预报业务的正贡献,是决定海量卫星资料同化效率、质量和效果的重要环节。针... 在数值天气预报变分同化中,利用同化前处理将卫星资料完成有效信息优选、资料拼接和稀疏化、初级通道选择、下边界参数耦合等处理,实现卫星资料同化对数值天气预报业务的正贡献,是决定海量卫星资料同化效率、质量和效果的重要环节。针对多种格式的卫星资料,中国气象局研发标准格式的高时效卫星资料拼接等技术,有效减小整轨卫星资料时间滞后对数值天气预报业务的负面影响。对于风云气象卫星资料,将云和降水检测、资料质量分析等处理置于同化前处理中,实现多光谱资料融合的同化预质量控制,保证了风云卫星微波温度探测资料和红外高光谱资料的同化正贡献。利用统一资料格式对预处理卫星资料进行再处理,拓展针对卫星成像和主动探测资料的处理,将卫星资料同化的部分质量控制功能置于卫星资料同化前处理中,是风云卫星资料同化前处理技术发展的重要趋势。 展开更多
关键词 数值天气预报 气象卫星资料 同化前处理
下载PDF
多源极轨卫星微波温度计资料实时区域同化系统
11
作者 希爽 于天雷 +2 位作者 任素玲 张里阳 唐世浩 《电子技术应用》 2024年第3期86-91,共6页
基于中尺度数值预报模式WRF和WRFDA同化系统,实现多源极轨卫星微波温度计资料实时区域同化,并对同化产品进行评估和应用。2018年同化试验结果表明:通过质量控制和偏差订正,AMSU-A资料第5~9通道亮温观测增量O-B(观测值O和背景场的正演辐... 基于中尺度数值预报模式WRF和WRFDA同化系统,实现多源极轨卫星微波温度计资料实时区域同化,并对同化产品进行评估和应用。2018年同化试验结果表明:通过质量控制和偏差订正,AMSU-A资料第5~9通道亮温观测增量O-B(观测值O和背景场的正演辐射模拟值B的差值)的标准差有效降低,同化后各通道亮温分析残差O-A(观测值O和分析场的正演辐射模拟值A的差值)的标准差有效降低。同化预报产品被应用在暴雨强对流个例和台风个例中,取得良好效果。 展开更多
关键词 卫星资料同化 区域数值天气预报 极轨气象卫星 卫星微波观测
下载PDF
融合DEM与FY-4A数据的ECMWF预报产品深度学习订正方法
12
作者 谈玲 刘巧 夏景明 《气象学报》 CAS CSCD 北大核心 2024年第4期539-553,共15页
精准的数值天气预报是精细化气象公共服务和商业服务的重要前提。欧洲中期天气预报中心(European Center forMedium Weather Forecasting,ECMWF)预报产品在全球被广泛采用,但始终存在系统预报误差。针对数值天气预报中的误差和多源数据... 精准的数值天气预报是精细化气象公共服务和商业服务的重要前提。欧洲中期天气预报中心(European Center forMedium Weather Forecasting,ECMWF)预报产品在全球被广泛采用,但始终存在系统预报误差。针对数值天气预报中的误差和多源数据融合中的非线性映射等问题,设计了一个ECMWF数值预报产品的深度学习订正模型(Numerical Forecast CorrectionNetwork,NFC-Net)。NFC-Net引入了FY-4A卫星观测数据、数字高程模型数据(Digital Elevation Model,DEM)和ERA5历史实况数据订正预报结果,利用多源数据空间分辨率对齐模块、时空特征提取模块解决多源异构数据特征的提取与融合问题,并通过UNet网络实现ECMWF预报产品的订正。为了评估所提算法的性能,利用NFC-Net对ECMWF产品中的2 m气温和10 m风速两个天气要素开展订正试验,并将试验结果与ECMWF预报结果、ANO方法订正结果、Convlstm方法订正结果、Fuse-CUnet方法订正结果和ERA5实况进行对比。结果显示,NFC-Net模型订正的2 m气温和10 m风速的均方根误差(Root Mean Squared Error,RMSE)分别较ECMWF预报产品下降49.71%和50.86%。表明NFC-Net模型可以充分利用多源数据有效改善复杂地形条件下的订正结果。NFC-Net模型可用于订正ECMWF预报结果,显著提升数值天气预报的精度。 展开更多
关键词 数值天气预报 误差订正 深度学习 多源数据融合 注意力机制
下载PDF
降雨监测与预报技术在防洪减灾中的应用进展
13
作者 原文林 杨逸凡 +2 位作者 赵小棚 郭进军 胡少伟 《人民长江》 北大核心 2024年第8期8-14,22,共8页
洪水灾害突发性强,成灾速度快,对人民生命和财产安全造成较大的威胁。降雨作为洪水灾害致灾因子,数据的精确度对防洪减灾具有重要意义。以降雨监测与预报技术为切入点,对雨量站点观测、天气雷达降雨估计及预报、降雨数值预报、卫星遥感... 洪水灾害突发性强,成灾速度快,对人民生命和财产安全造成较大的威胁。降雨作为洪水灾害致灾因子,数据的精确度对防洪减灾具有重要意义。以降雨监测与预报技术为切入点,对雨量站点观测、天气雷达降雨估计及预报、降雨数值预报、卫星遥感反演的现状进行了总结,通过分析时空降尺度方法及多源数据融合技术在降雨监测与预报中的应用,揭示了其在提升降雨数据“量”与“型”准确度方面的效果。研究表明:降雨监测与预报技术在当前取得了显著进展,但在山丘区和城市环境空间的复杂地形方面仍面临分辨率受到限制及精确性、时效性不足的问题。多源数据融合能提高降雨数据精度、时空覆盖能力和预测准确性,优化算法模型、融合“空-天-地”多源数据形成高分辨率预报是未来的研究方向。 展开更多
关键词 降雨监测 降雨预报 防洪减灾 卫星遥感 天气雷达 数值预报 降尺度 多源数据融合
下载PDF
基于数值天气预报因子扩充和改进集成学习的高寒地区短期光伏功率预测
14
作者 刘伟 杨凯宁 《电气技术》 2024年第8期1-10,17,共11页
高寒地区光伏系统因气象条件影响,其光伏功率表现出更显著的波动性。本文以黑龙江某光伏电站为例,提出基于数值天气预报(NWP)因子扩充和改进常规Stacking集成学习的高寒地区短期光伏功率预测方法。针对高寒地区光伏功率波动大的特点,引... 高寒地区光伏系统因气象条件影响,其光伏功率表现出更显著的波动性。本文以黑龙江某光伏电站为例,提出基于数值天气预报(NWP)因子扩充和改进常规Stacking集成学习的高寒地区短期光伏功率预测方法。针对高寒地区光伏功率波动大的特点,引入NWP差分因子作为交叉特征,提升模型对天气变化的敏感性。随后,以极致梯度提升(XGBoost)和长短期记忆(LSTM)网络为基学习器,时间卷积网络(TCN)为元学习器,构建集成学习模型,并利用前向验证优化模型结构。最后,进行对比实验分析,结果表明本文所提方法具有更高的预测准确度和稳定性。 展开更多
关键词 光伏功率短期预测 高寒地区 Stacking集成学习 数值天气预报(nwp)差分因子 前向验证
下载PDF
大数据时代:数值天气预报的机遇与挑战 被引量:1
15
作者 郭亚楠 曹小群 +1 位作者 周梦鸽 彭柯澄 《网络安全与数据治理》 2024年第1期28-32,共5页
随着地球观测系统及数值模拟方法的不断发展,数值天气预报研究进入以数据驱动为核心的新范式,大气科学也迈入了大数据时代,大数据技术赋能数值天气预报发展成为大气科学研究的热点方向。从气象海洋大数据的内涵、分类及其特征出发,概括... 随着地球观测系统及数值模拟方法的不断发展,数值天气预报研究进入以数据驱动为核心的新范式,大气科学也迈入了大数据时代,大数据技术赋能数值天气预报发展成为大气科学研究的热点方向。从气象海洋大数据的内涵、分类及其特征出发,概括和梳理了气象海洋大数据在数值天气预报的应用,从技术方面,对资料同化、物理过程参数化、数值预报产品订正,以及机理与数据融合的模式开发等问题进行分析,并对相关应用进行了深入探讨和展望,从而为气象海洋大数据与数值天气预报的融合发展提供重要参考依据。 展开更多
关键词 气象 海洋 大数据 数值天气预报
下载PDF
Assimilating FY-4A AGRI Radiances with a Channel-Sensitive Cloud Detection Scheme for the Analysis and Forecasting of Multiple Typhoons
16
作者 Feifei SHEN Aiqing SHU +4 位作者 Zhiquan LIU Hong LI Lipeng JIANG Tao ZHANG Dongmei XU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期937-958,共22页
This paper presents an attempt at assimilating clear-sky FY-4A Advanced Geosynchronous Radiation Imager(AGRI)radiances from two water vapor channels for the prediction of three landfalling typhoon events over the West... This paper presents an attempt at assimilating clear-sky FY-4A Advanced Geosynchronous Radiation Imager(AGRI)radiances from two water vapor channels for the prediction of three landfalling typhoon events over the West Pacific Ocean using the 3DVar data assimilation(DA)method along with the WRF model.A channel-sensitive cloud detection scheme based on the particle filter(PF)algorithm is developed and examined against a cloud detection scheme using the multivariate and minimum residual(MMR)algorithm and another traditional cloud mask–dependent cloud detection scheme.Results show that both channel-sensitive cloud detection schemes are effective,while the PF scheme is able to reserve more pixels than the MMR scheme for the same channel.In general,the added value of AGRI radiances is confirmed when comparing with the control experiment without AGRI radiances.Moreover,it is found that the analysis fields of the PF experiment are mostly improved in terms of better depicting the typhoon,including the temperature,moisture,and dynamical conditions.The typhoon track forecast skill is improved with AGRI radiance DA,which could be explained by better simulating the upper trough.The impact of assimilating AGRI radiances on typhoon intensity forecasts is small.On the other hand,improved rainfall forecasts from AGRI DA experiments are found along with reduced errors for both the thermodynamic and moisture fields,albeit the improvements are limited. 展开更多
关键词 FY-4A AGRI radiance particle filter multiple typhoons data assimilation numerical weather prediction
下载PDF
暴雨数值预报若干关键技术发展的回顾与思考
17
作者 张立凤 《暴雨灾害》 2024年第3期243-254,共12页
暴雨是导致洪涝灾害的重要天气,也是发生在我国的最主要自然灾害之一。随着高分辨率数值模式的发展,数值预报已成为暴雨预报的主要手段,然而数值预报的精度依赖于大气运动方程组的完备性、初始状态的准确性、物理过程的合理性以及计算... 暴雨是导致洪涝灾害的重要天气,也是发生在我国的最主要自然灾害之一。随着高分辨率数值模式的发展,数值预报已成为暴雨预报的主要手段,然而数值预报的精度依赖于大气运动方程组的完备性、初始状态的准确性、物理过程的合理性以及计算方法的稳定性。由于大气是非线性的混沌系统,这些方面微小的误差均会产生预报结果的很大不确定性。因此,提升暴雨数值预报水平与资料同化、物理过程参数化和集合预报等技术和方法的发展密切相关,特别是产生降水的云微物理过程参数化方案在数值模式中的作用很重要。此外,为改进和完善数值模式,预报结果的评估方法研究也是暴雨数值预报技术研究不可缺少的重要内容。本文主要回顾了暴雨数值预报若干关键技术的发展,重点介绍了四维集合变分同化方法、云微物理参数化方案、集合预报模式扰动的后向动能散射方法,并提出了基于动能谱分析的模式结果评估方法,最后凝练出了这几个方面未来研究的方向。 展开更多
关键词 暴雨 数值预报 资料同化 微物理过程 集合预报
下载PDF
气象因子动态自适应的短期负荷预测方法
18
作者 邓立 耿琳 +2 位作者 肖伟栋 王国成 王艳红 《分布式能源》 2024年第3期73-81,共9页
在加快构建新型电力系统背景下,提升负荷预测精度是保障电力系统经济、安全、稳定运行的重要措施,也是推动智能电网发展的关键所在。为增强对地区负荷的预测能力,提出一种气象影响因子动态自适应的短期负荷预测方法。首先,建立了基于并... 在加快构建新型电力系统背景下,提升负荷预测精度是保障电力系统经济、安全、稳定运行的重要措施,也是推动智能电网发展的关键所在。为增强对地区负荷的预测能力,提出一种气象影响因子动态自适应的短期负荷预测方法。首先,建立了基于并行多尺度时域卷积神经网络的负荷/气象信息融合模块,挖掘历史负荷与区域天气预报的多时间周期的变化模式;然后,提出了基于深度门控残差神经网络的气象因子动态辨识模块,通过动态调整特征贡献度并优化特征选择,增强对不同时空尺度特征权重的融合,提升模型对关键特征的提取能力;最后,以京津冀某区域的负荷数据进行算例分析,证明所提区域负荷预测方法具有更高的预测精度,对区域负荷的趋势性变化有较好的追踪效果。 展开更多
关键词 负荷预测 区域负荷 深度学习 数据融合 数值天气预报
下载PDF
一种新的多因子约束下的NWP反演ZTD残差改正模型 被引量:4
19
作者 闫俐孜 马丹 +2 位作者 徐莹 王胜利 范曹明 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第3期443-450,共8页
对流层延迟是GNSS定位的主要误差源之一,利用NWP模型的气象数据积分反演ZTD是当前研究热点.然而,采用两大气象预报中心(ECMWF和NCEP)的再分析资料反演ZTD的残差一般在±60mm之间浮动,预报资料反演的ZTD的精度更差,都不能直接用于精... 对流层延迟是GNSS定位的主要误差源之一,利用NWP模型的气象数据积分反演ZTD是当前研究热点.然而,采用两大气象预报中心(ECMWF和NCEP)的再分析资料反演ZTD的残差一般在±60mm之间浮动,预报资料反演的ZTD的精度更差,都不能直接用于精密定位.一般是先将此反演的ZTD作为初值,设定先验方差,将残差作为未知参数求解.NWP反演的ZTD的精度,将直接影响对流层和模糊度参数在滤波过程中收敛速度.前人的研究表明.NWP反演ZTD的残差大小与测站所在纬度相关.利用纬度与残差的相关函数可提高NWP反演ZTD的精度.但效果并不明显.针对以上问题,比较ECMWF和NCEP再分析资料反演ZTD的精度,然后分析精度较高的ECMWF资料反演的ZTD的残差随温度、湿度、纬度、季节等因子变化的规律,并结合基于最小绝对残差法的多项式拟合方法拟合残差,提出一种新的多因子约束下的NWP反演ZTD的残差改正模型,从而提高NWP反演ZTD的精度.为验证模型的性能.以133个IGS站高精度ZTD为参考.拟合2015年ECMWF反演ZTD的残差.构建残差改正模型.并利用此模型改正2016年ECMWF反演的ZTD.实验结果表明:在纬度高于15°的地区.NWP反演的ZTD的平均残差和均方根误差比使用模型前分别减小了86.9%和36.3%.另外,对于较低纬度地区.此残差改正模型的效果不明显. 展开更多
关键词 对流层延迟(ZTD) 数值天气预报(nwp) 残差改正模型 残差拟合
下载PDF
基于多位置NWP和门控循环单元的风电功率超短期预测 被引量:31
20
作者 杨茂白 玉莹 《电力系统自动化》 EI CSCD 北大核心 2021年第1期177-183,共7页
数值天气预报(NWP)对风电功率超短期预测模型精度有着重要影响。为充分利用NWP信息,考虑多个风电场的空间相关性,提出一种基于多位置NWP和门控循环单元的风电功率超短期预测模型。首先,通过随机森林分析多位置NWP信息对风电场发电功率... 数值天气预报(NWP)对风电功率超短期预测模型精度有着重要影响。为充分利用NWP信息,考虑多个风电场的空间相关性,提出一种基于多位置NWP和门控循环单元的风电功率超短期预测模型。首先,通过随机森林分析多位置NWP信息对风电场发电功率的重要程度,利用累积贡献率提取NWP中的有效信息,将加权的NWP信息与历史功率数据作为预测模型的输入变量。然后,选取改进的灰狼寻优算法对门控循环单元的参数进行优化,建立多变量时间序列预测模型,进行风电场发电功率的超短期预测。最后,选取中国某风电场的实测数据进行算例分析,验证了所提方法的有效性和可行性。 展开更多
关键词 多位置数值天气预报 随机森林 风电功率预测 灰狼寻优算法 门控循环单元
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部