Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of...Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of distribution networks.In order to improve the absorption ability of large-scale distributed PV access to the distribution network,the AC/DC hybrid distribution network is constructed based on flexible interconnection technology,and a coordinated scheduling strategy model of hydrogen energy storage(HS)and distributed PV is established.Firstly,the mathematical model of distributed PV and HS system is established,and a comprehensive energy storage system combining seasonal hydrogen energy storage(SHS)and battery(BT)is proposed.Then,a flexible interconnected distribution network scheduling optimization model is established to minimize the total active power loss,voltage deviation and system operating cost.Finally,simulation analysis is carried out on the improved IEEE33 node,the NSGA-II algorithm is used to solve specific examples,and the optimal scheduling results of the comprehensive economy and power quality of the distribution network are obtained.Compared with the method that does not consider HS and flexible interconnection technology,the network loss and voltage deviation of this method are lower,and the total system cost can be reduced by 3.55%,which verifies the effectiveness of the proposed method.展开更多
According to the physiological and anatomical characteristics of small intestine,neglecting the effect of its motility on the distribution and absorption of drug and nutrient,Y.Miyamoto et al.proposed a model of two-d...According to the physiological and anatomical characteristics of small intestine,neglecting the effect of its motility on the distribution and absorption of drug and nutrient,Y.Miyamoto et al.proposed a model of two-dimensional laminar flow in a circular porous tube with permeable wall and calculated the concentration profile of drugby numerical analysis.In this paper,we give a steady-state analytical solution of the above model including deactivationterm.The obtained results are in agreement with the results of their numerical analysis. Moreover the analytical solution presented in this paper reveals the relation among the physiological parameters of the model and describes the basic absorption rule of drug and nutrient through the intestinal wall and hence pro- vides a theoretical basis for determining the permeability and reflection coefficient through in situ experiments.展开更多
In this study, we show that the percutaneous absorption and brain distribution of tetramethylpyrazine(TMP) is enhanced when combined with borneol(BN) in a microemulsionbased transdermal therapeutic system(ME-TTS). The...In this study, we show that the percutaneous absorption and brain distribution of tetramethylpyrazine(TMP) is enhanced when combined with borneol(BN) in a microemulsionbased transdermal therapeutic system(ME-TTS). The formulation of the TMP and BN microemulsion(TEM-BN-ME) was optimized in skin permeation studies in vitro following a uniform experimental design. Male Sprague-Dawley rats were used for the in vivo pharmacokinetic and tissue distribution studies of TMP-BN-ME-TTS. In the pharmacokinetic study, the TMP-BN-ME-TTS treated rats had significantly higher( P < 0.05) C max and AUC of TMP than the TMP-ME-TTS treated rats, indicating that BN improves the rate and extent of TMP percutaneous absorption. In the tissue distribution study, the AUC of TMP in brain was significantly higher in the TMP-BN-ME-TTS group( P < 0.05), indicating that BN facilitates the distribution of TMP in brain. In summary, BN enhanced the percutaneous absorption and brain distribution of TMP in a microemulsion-based transdermal therapeutic system.展开更多
Zinc(Zn) is an important essential microelement for wheat.In order to study the characteristics of Zn absorption,accumulation and distribution in highly-yielding winter wheat(with a grain yield of 9 000 kg ha-1),f...Zinc(Zn) is an important essential microelement for wheat.In order to study the characteristics of Zn absorption,accumulation and distribution in highly-yielding winter wheat(with a grain yield of 9 000 kg ha-1),field experiments were conducted in Gaocheng County of Hebei Province,China.Four winter wheat cultivars,i.e.,Shimai 14,Jifeng 703,Shimai 12,and Shixin 828,and four cultivars,i.e.,Temai 1,Shimai 12,Shixin 531,and Shixin 828,were used in the experiment,during 2004-2005 and 2005-2006,respectively.Plant samples were taken from the plots at each growing stage for Zn concentration analysis.The main results showed that the concentration of Zn in various above-ground organs of wheat was 9.5-112.5 mg kg-1 at different growing stages.The organ with the highest Zn concentration differed with the change of growth center at different growing stages.Accumulation of Zn in leaf blades was the highest among all the organs during early growing period,and more than 50% of the Zn accumulation was distributed to leaf blades before jointing,and higher than that to other organs.In late growing period,however,the accumulation of Zn in grains was the highest,and 58.1% of the Zn accumulation was distributed in grains at maturity.The total accumulation of Zn in wheat plant during its life span ranged from 384.9 to 475.9 g ha-1.The amount of Zn required for the formation of 100 kg grain yield ranged from 4.3 to 5.2 g.All the organs were ordered in such a sequence that leaf blades 〉 spikes 〉 leaf sheaths 〉 stems according to their net absorption and transportation of Zn as well as their contribution to Zn accumulation in grains.58.2-60.3% of the Zn accumulated in grains was redistributed from other organs,mostly from leaf blades.Concentration and accumulation of Zn in all the organs of wheat was high during early and middle growing periods,while accumulation of Zn in grains during late growing period mainly depended on the redistribution from other organs.According to these characteristics of Zn absorption and accumulation,Zn should be applied as seed dressing or basal fertilizer,so as to accelerate the early growth and Zn absorption of wheat.展开更多
Based on split plot design method of field test,the impacts of supplemental irrigation based on soil moisture measurement and nitrogen use on winter wheat yield and nitrogen absorption and distribution were studied.Su...Based on split plot design method of field test,the impacts of supplemental irrigation based on soil moisture measurement and nitrogen use on winter wheat yield and nitrogen absorption and distribution were studied.Supplemental irrigation had three levels: 60%(W_1),70%(W_2) and 80%(W3) of the targeted relative water content at 0-40 cm of soil layer during jointing period of winter wheat.Nitrogen fertilization had three levels: not using nitrogen(N_0),using pure nitrogen of 195 kg/hm^2(N_(195)) and 255 kg/hm^2(N_(255)).Results showed that:(i)different supplemental irrigation and nitrogen fertilization significantly affected plant height and leaf area of winter wheat during key growth period.Under the same supplemental irrigation treatment,both plant height and leaf area of winter wheat showed as N_(255)> N_(195)> N_0(P <0.05).Plant height in N_(195) and N_(255)treatments was significantly higher than that in N_0 treatment,but there was not significant difference between N_(195) and N_(255)(P >0.05).Under the same nitrogen fertilization,plant height in W_2(569.4 m^3/hm^2) and W3(873.45 m^3/hm^2) treatments was significant higher than that in W_1(265.2 m^3/hm^2),but there was not significant difference between W_2 and W3(P >0.05).It illustrated that excessive nitrogen fertilization and supplemental irrigation did not significantly affect plant height and leaf area of winter wheat.(ii) Under the same nitrogen fertilization level,yield increase effect of winter wheat by supplemental irrigation showed a declining trend with nitrogen application amount increased.It illustrated that nitrogen fertilization and supplemental irrigation had certain critical values on the yield of winter wheat.When surpassing the critical value,the yield declined.When nitrogen fertilization amount was 195 kg/hm^2,and supplemental irrigation amount was 70% of field moisture capacity(569.4 m^3/hm^2),the highest yield 8500 kg/hm^2 could be obtained.(iii) During mature period of winter wheat,nitrogen accumulation amount of plant treated by nitrogen was significantly higher than that not treated by nitrogen(P <0.05).But under the treatments of W_2 and W3,nitrogen accumulation amount in N_(255) significantly declined when compared with N_(195)(P <0.05).Especially under W3(873.45 m^3/hm^2) level,nitrogen accumulation amount in N_(255) was even lower than N_0.Under the treatments of N_0 and N_(195),nitrogen accumulation amount of plant significantly increased with supplemental irrigation increased(P < 0.05).But under N_(255) treatment,there was not significant difference(P > 0.05).It illustrated that moderate supplemental irrigation and nitrogen fertilization could improve nitrogen absorption ability of winter wheat,but excessive supplemental irrigation and nitrogen fertilization were not favorable for plant's nitrogen absorption.(iv) Although the increase of supplemental irrigation during jointing period improved nitrogen absorption ability of winter wheat and promoted winter wheat absorbing more nitrogen,it inhibited nitrogen transferring and distributing to seed.Comprehensively considering growth condition of winter wheat and nitrogen risk condition,it is suggested that nitrogen application amount was 195 kg/hm^2,and supplemental irrigation reached 70% of field moisture capacity(569.4 m^3/hm^2),which could be as the suitable water and fertilizer use amounts in the region.展开更多
The risk of pharmacokinetic polyphenols-trace elements interaction may undesirable therapeutic outcomes. We evaluate the long-term use of silibinin, epigallocatechin (ECGC), quercetin and rutin on the absorption and t...The risk of pharmacokinetic polyphenols-trace elements interaction may undesirable therapeutic outcomes. We evaluate the long-term use of silibinin, epigallocatechin (ECGC), quercetin and rutin on the absorption and tissue distribution of zinc, copper and iron after single oral doses in rats. Five groups of rats were either with olive oil as control or with one of the polyphenols silibinin, EPGC, quercetin or rutin, administered orally as oily solutions for 30 days. At day 30, a solution contains sulphate salt of zinc, copper and iron was administered orally;3 hrs later blood samples, tissues of brain, kidney and liver were obtained for evaluation of the elements levels. The results showed that the polyphenols increased both serum and tissue levels of these elements compared with controls. This effect was relatively varied according to the structural differences among flavonoids. In conclusion, long-term use of supraphysiological doses of flavonoids increase absorption of Zn, Cu and Fe and their tissue availability in brain, kidney and liver;this effect seems to be different with variations in structural features.展开更多
Under the same conditions of selenium application and application period,different application concentration treatments were set carry out the field plot experiments. The results showed that different treatments had n...Under the same conditions of selenium application and application period,different application concentration treatments were set carry out the field plot experiments. The results showed that different treatments had no effect on the growth and development of rice plants;different treatments had an effect on the economic traits of rice; selenium treatment increased the number of filled grains per panicle,seed setting rate and 1 000-grain weight,thus increasing yield; the level of yield was Se4 > Se3 > Se2 > Se1 > Se0; different treatments had a greater effect on the milled rice rate; selenium treatment increased the milled rice rate; the milled rice rate of Se3 and Se4 treatments were 65% and 64%,respectively,which was significantly higher than that of the control group; the general law of selenium absorption of rice was leaf > stem> rice; the selenium content in leaves,stems and rice of different treatments was the highest in Se3 treatment; both the selenium content of rice( total selenium and organic selenium) and the ratio of organic selenium to total selenium in the selenium treatment met the local food safety standard of Hubei Province Selenium content of Selenium-enriched Foods( DBS42/002-2014); selenium-treated rice plants had a high selenium utilization rate,in the range of 51. 26%-64. 12%,exceeding 50%.展开更多
Lead and cadmium in herbal medicines are highly toxic to living organisms even in low concentrations. An effective method is developed for analysis of trace lead and cadmium in Chinese herbal medicines and their decoc...Lead and cadmium in herbal medicines are highly toxic to living organisms even in low concentrations. An effective method is developed for analysis of trace lead and cadmium in Chinese herbal medicines and their decoctions by graphite furnace atomic absorption spectrometry (GFAAS). The effects of analytical conditions on absorbance were investigated and optimized. A water-dissolving capability for Pb and Cd was investigated, and the contents of different species in five Chinese herbal medicines and their decoctions were analyzed. The content ratios (kow) of n-octanol-soluble Pb or Cd to water-soluble Pb or Cd were evaluated, and the distribution of Pb and Cd in water decoction at stomach and intestine acidities was developed, in the first time. The contents of water-soluble Pb and Cd, n-octanol-soluble Pb and Cd, and their content ratios were related with the kind of medicine and the acidity of the decoction. The proposed method has the advantages of simple operation, high sensitivity and high speed, with 3 σ detection limits of 4.2 pg for Pb and 0.1 pg for Cd.展开更多
This study was conducted to investigate the distribution and accumulation of major elements of 5-year-old Eucalyptus grandis forests with the densities of 556 trees/hm2 and 1 667 trees/hm2. The results showed that: ...This study was conducted to investigate the distribution and accumulation of major elements of 5-year-old Eucalyptus grandis forests with the densities of 556 trees/hm2 and 1 667 trees/hm2. The results showed that: (1) The distribution of ma- jor nutrient element contents in various organs of the E. grandis with the 2 densi- ties was nearly the same, and the ranked order was leaf〉tree trunk〉branch or branchlet〉fruit〉bark. (2) From the distribution of nutrient elements and organic mat- ter in the trunk, P, K, Mg and Ca contents presented basically a trend of increasing with the trunk height increasing. And the organic matter content increased with the trunk height increasing in the low density stand, while the result was opposite in the high density stand. Furthermore, N content increased with the trunk height increas- ing in the low density stand, but the content in the high density stand exhibited a trend of decreasing at first, increasing then and increasing at the last. (3) From the distribution of biomass, the ranked order was tree trunk〉bark or branch〉branchlet〉 leaf〉fruit. And (4) The accumulated amounts of major nutrient elements in various organs under the 2 stand densities was nearly same. Ca content was the highest in the 2 kinds of plantations, followed by N, K, Mg and P contents. Ca content was 601.78 kg/hm2 in the low density stand and 1 204. 43 kg/hm2 in the high density stand.展开更多
ObjectiveThis study aimed to investigate the effect of the interactions among potassium (K), calcium (Ca) and sodium (Na) on cabbage growth and nutrient absorption. MethodA total of 11 treatments with different ...ObjectiveThis study aimed to investigate the effect of the interactions among potassium (K), calcium (Ca) and sodium (Na) on cabbage growth and nutrient absorption. MethodA total of 11 treatments with different levels of K, Ca and Na were set in the pot experiment to measure the nutrient content and uptake in cabbage plants. ResultThe use of K or the combined use of K and Ca improved the cabbage absorption on K and Ca. In addition, K and Ca presented an interaction as that appropriate amount of Ca promoted K uptake while excessive Ca inhibited the uptake. The treatment of Ca 2 K 3 with 0.33 g/pot of Ca and 0.67 g/pot of K could significantly increase the quantity of dry matter accumulation and absorption of Ca and K in cabbage, was the best among all treatments. ConclusionApplication of suitable amount of Ca could release the Na stress on cabbage growth at the low level of Na in soil.展开更多
[Objective] The paper was to study the distribution of main nutrients in seedlings of umbrella bamboo (Fargesia murielae) in Shennongjia National Nature Reserve. [Method] The study was conducted in Liangfengya of Shen...[Objective] The paper was to study the distribution of main nutrients in seedlings of umbrella bamboo (Fargesia murielae) in Shennongjia National Nature Reserve. [Method] The study was conducted in Liangfengya of Shennongjia National Nature Reserve. In the field investigation, six clumps of umbrella bamboo grown independently were randomly selected and sampled. The total nitrogen, total phosphorus and total potassium of umbrella bamboo were detected by regular plant analysis method. The age classes of bamboo seedlings were ascertained by age grade backtracking method. [Result] In different organs, N, P, K contents in branches and leaves were significantly higher that than in stems. Along age grades, N and P contents performed "M" shape in branches and leaves, while K content approximately performed as normal distribution. [Conclusion] The nutrients distribution pattern of these seedlings is likely formed by its nutrition mechanism which allocates nutrients according to different needs or by external interference of environmental features. However, the specific causes still need further investigation.展开更多
To evaluate the effect of organic manure application with chemical fertilizers on rice yield and soil fertility under long-term double-rice cropping system, a six year field experiment was conducted continually in the...To evaluate the effect of organic manure application with chemical fertilizers on rice yield and soil fertility under long-term double-rice cropping system, a six year field experiment was conducted continually in the paddy soil derived from Quaternary red clay in Hunan Province of southern China. Four different treatments, i.e., no nitrogen with chemical P and K (PK), swine manure only (M), N, P and K chemical fertilizers only (NPK), and half chemical fertilizers combined with half swine manure (NPKM) with four replications were included. Each N, P and K application rate was the same at all the treatments (except the N application rate at PK) and N application rate was 150 kg N ha^-1. All fertilizers were applied to soil tillage layer with once application as baseal fertilizers. The nutrients uptake rate, grain yield, nitrogen use efficiency, and soil organic matter content at each treatment were investigated. The NPKM treatment achieved the highest mean annual yield of 12.2 t ha^-1 (68% higher than that of PK). Higher dry matter accumulation and nutrients absorption were observed during the middle-late growth period in the NPKM treatment, with higher panicle number per unit and filled-grain number per panicle. Its average nitrogen use efficiency was 36.3% and soil organic matter increased by 18.5% during the experimental period in the NPKM treatment, which were significantly higher than those in the NPK treatment. Organic manure application with chemical fertilizers increased the yield and nitrogen use efficiency of rice, reduced the risk of environmental pollution and improved soil fertility greatly. It could be a good practical technique that protects the environment and raises the rice yield in this region.展开更多
Biomass production and nutrient (N, P, K, Ca and Mg) accumulation, distribution and cycling were quantified in young, mature and over-mature (10-, 22-, and 34-year old) Chinese fir [Cunninghamia lanceolate (Lamb....Biomass production and nutrient (N, P, K, Ca and Mg) accumulation, distribution and cycling were quantified in young, mature and over-mature (10-, 22-, and 34-year old) Chinese fir [Cunninghamia lanceolate (Lamb.) Hook] plantations in southern China. Total stand biomass of young, mature and over-mature stands was 38, 104 and 138 t ha-1 respectively. Biomass production increased significantly with age. Stem wood represented the highest percentage of stand biomass, accounting for 41, 55 and 63 % in the young, mature and over-mature plan- tations respectively. Nutrients concentration was highest in live needles and branches, and lowest in stem wood. The plantations accumulated more N, followed by K, Ca, Mg, and P. Nutrient return amount, nutrient utilization effi- ciency, nutrient turnover time, the ratio of nutrient return and uptake increased with stand age, which implies that young Chinese fir deplete soil nutrients to maintain growth, and efficiently utilize nutrients to decrease dependence on soil nutrients as they age. Harvesting young Chinese fir plantations would therefore lead to high nutrient loss, but prolonging the rotation length could improve soil recovery, and help sustain productivity in the long-term. Improved nutrient return through litterfall as stands get older may also be beneficial to nutrient pool recovery.展开更多
Water samples were collected in 120 stations in the Bohai Sea of China to analyze the distribution of dissolved nutrients and assess the degree of eutrophication in August 2002. The result shows that the average conce...Water samples were collected in 120 stations in the Bohai Sea of China to analyze the distribution of dissolved nutrients and assess the degree of eutrophication in August 2002. The result shows that the average concentration of DIN increased and the PO4-P concentration sharply decreased compared to the previous data of corresponding period. The high concentrations of DIN and PO4-P occurred in coastal waters, especially in the bays and some river estuaries, while the high concentrations of SiO3-Si in the surface and middle depth occurred in the central area of the Bohai Sea. The average ratio of DIN/PO4-P was much higher than the Redfield Ratio (16:1). Apparently, PO4-P was one of the limiting nutrient for phytoplankton growing in the sea. The average concentrations of DON and DOP were higher than their inorganic forms. The results of eutrophication assessment show that 22.1% of all stations were classified as violating the concentration levels of the National Seawater Quality Standard (GB 3097-1997) for DIN and only 3.9% for PO4-R The average eutrophication index in the overall area was 0.21±0.22 and the high values occurred in Bohai Bay, Liaodong Bay and near the Yellow River estuary. This means that the state of eutrophication was generally mesotrophic in the Bohai Sea, but relatively worse in the bays, especially some river estuaries.展开更多
The soil organic matter and nutrients are fundamental for the sustainability of pear production, but little is known about the spatial distribution of soil organic matter and nutrients in a pear orchard. With the soil...The soil organic matter and nutrients are fundamental for the sustainability of pear production, but little is known about the spatial distribution of soil organic matter and nutrients in a pear orchard. With the soil of the pear (cv. Dangshansu on P.betulifolia Bunge. rootstock) orchard under clean and sod cultivation models as test materials, the experiment was conducted to evaluate spatial variability of soil organic matter (SOM), total nitrogen (STN), total phosphorus (STP), total potassium (STK), available nitrogen (SAN), and available potassium (SAK) in and between rows at different soil depths (0-60 cm). The SOM, STN, STP, STK, SAN and SAK of the different soil layers under the two tillage models were different in the vertical direction. The SOM, STN, STP and SAN in the 0-20 cm soil layer were higher than those in the 20-40 and 40- 60 cm soil layers. The STK of 40-60 cm soil layer was higher than that in the 0-20 and 20-40 cm soil layers. The STK increased with the depth of soil in the vertical direction in the clean cultivated pear orchard. Variability of the SOM, STN, STP, STK, SAN and SAK of sample sites in between rows of the same soil layer was found in the pear orchard soil in the horizontal direction under clean and sod cultivation management systems, except that STK of all sites did not show the difference in identical soil layers in the pear orchard under clean cultivation. The sod cultivation model improved the SOM, STN, and STK in the 0-20 cm soil layer in the pear orchard, and the three components increased by 12.8, 12.7 and 7.3% compared to clean cultivation, respectively. The results can be applicable to plan collection of orchard soil samples, assess orchard soil quality, and improve orchard soil management practices.展开更多
The distribution of nutrients and the effect of side transport of nutrients on anchovy spawning ground to the southern waters of Shandong Peninsula are discussed based on the data collected in June 2000, May and June ...The distribution of nutrients and the effect of side transport of nutrients on anchovy spawning ground to the southern waters of Shandong Peninsula are discussed based on the data collected in June 2000, May and June 2001. The coastal current and upwelling are the main physical processes of nutrient transport to the southern waters of Shandong Peninsula. The concentrations of nutrients, Chl-a, the density of anchovy eggs, larva and juvenile fish increase obviously where they are greatly affected by these processes, while the contents of nutrients and Chl-a, the density of anchovy eggs, larva and juvenile fish decrease significantly where these processes diminish or disappear. The investigation suggest that the side transport of nutrients by Lubei (North Shandong) coastal current in the northern area causes the Chl-a content to be high and dense anchovy eggs, larva and juvenile fish to be dense in the coastal area of the Chengshan Cape. In the southern area, the riverine input from Subei irrigation ditch with high content of nutrients inshore and upwelling in the western edge of the Huanghai Sea Cold Water offshore should be responsible for high Chl-a concentration and dense anchovy eggs, larva and juvenile fish. It is possible that these processes of nutrient transport have controlled the anchovy spawning ground to the southern waters of Shandong Peninsula.展开更多
[Objectives]This study was conducted to reveal the characteristics of nutrient absorption and accumulation in Pinus massoniana plantations in Northwestern Guangxi.[Methods]Based on field investigation and indoor analy...[Objectives]This study was conducted to reveal the characteristics of nutrient absorption and accumulation in Pinus massoniana plantations in Northwestern Guangxi.[Methods]Based on field investigation and indoor analysis,the contents,accumulation and annual net accumulation of five nutrient elements(N,P,K,Ca and Mg)in a mature P.massoniana plantation(26-year-old)in Nandan County,Guangxi Province were studied.[Results]The contents of nutrient elements in different organs of the mature P.massoniana plantation were the highest in the leaves,followed by the bark,branch and root,and the lowest in the stem.In general,among the contents of the five elements in different organs,N content was the highest,followed by K or Ca,and P and Mg were the lowest.The total accumulation of nutrient elements in the 26-year-old mature P.massoniana plantation in northwestern Guangxi was 1 384.05 kg/hm^2.Among the different structural levels of the stand,the tree layer had the highest accumulation of nutrient elements,which was 1 198.41 kg/hm^2,accounting for 86.59%of the total accumulation of nutrients in the plantation,and the accumulation of nutrients in other layers from the largest to the smallest was the litter layer(91.97 kg/hm^2),herb layer(49.86 kg/hm^2)and shrub layer(43.92 kg/hm^2),accounting for 3.17%,3.60%and 6.64%of the total nutrient accumulation of the plantation,respectively.The annual net accumulation of nutrient elements in the tree layer of the mature P.massoniana plantation was 46.09 kg/(hm^2·a),and the order of the annual net accumulation of different nutrient elements followed N>K>Ca>Mg>P;and the accumulation of 1 t of dry matter needed 6.37 kg of the five nutrients.[Conclusions]This study provides a scientific basis for the rational management of P.massoniana plantations,especially forest soil management.展开更多
To study the contents and distribution of inorganic nutrients in the Bohai Sea of China, two cruise surveys were undertaken in August (summer) 2000 and January (winter) 2001, respectively. A total of 595 water samples...To study the contents and distribution of inorganic nutrients in the Bohai Sea of China, two cruise surveys were undertaken in August (summer) 2000 and January (winter) 2001, respectively. A total of 595 water samples were collected from 91 stations and five nutrients, i.e., nitrate, nitrite, ammonia, phosphate and silicate, were analyzed for each sample. The results show that the average concentration of dissolved inorganic nitrogen (DIN) in the Bohai Sea in winter (6.529 μmol L -1) is significantly higher than that in summer (3.717 μmol L -1). The phosphorus concentration in winter (0.660 μmol L -1) is also significantly higher than that in summer (0.329 μmol L -1). Mean silicate concentration in winter (7.858 μmol L -1) is, however, not significantly different from that in summer (7.200 μmol L -1). Nutrients also vary considerably in different areas in Bohai Sea. DIN concentration in the Laizhou Bay (4.444 μmol L -1), for example, is significantly higher than those in the Bohai Bay (2.270 μmol L -1) and Bohai Strait (2.431 μmol L -1), which is caused by the discharge of large amounts of nitrogen into Laizhou Bay via Yellow River. The nutrients show different vertical distribution patterns. In summer, nutrients in bottom layer are generally richer than those in surface and middle layers. In winter, however, nutrients are not significantly different in different layers. Compared with historic data, DIN contents have increased continually since the early 1980 s. Based on atomic ratios of different nutrients, nitrogen is still the limiting factor for algal growth in the Bohai Sea.展开更多
Since the impoundment of the Three Gorges Reservoir(TGR), the riparian zone has been subjected to numerous environmental changes. This study was conducted to recognize the distribution of grass roots and its impacts o...Since the impoundment of the Three Gorges Reservoir(TGR), the riparian zone has been subjected to numerous environmental changes. This study was conducted to recognize the distribution of grass roots and its impacts on soil nutrients in the water level fluctuation zone of TGR. Roots of four predominant herbaceous plants in the study area, specifically, Cynodon dactylon, Hemarthria altissima, Hemarthria compressa, and Paspalum paspaloides, and their corresponding relation with soil nutrient contents were investigated. Root surface area density was determined with Win RHIZO, and the relationships of root distribution with soil depths and soil nutrient contents were studied. The results indicates that most roots are distributed in the top soil layer of 0-10 cm. Estimated root surface area density for the selected grass species ranges from 0.16 to 13.44 cm^2/cm^3, and decreases exponentially with an increase in soil depth. Soil organic matter and total nitrogen contents are significantly lower on bare control area than the corresponding values on the grasslands. Total nutrient contents on grasslands of C. dactylon and H. compressa are higher than those of other grass areas. Root length density and root surface area density are significantly correlated with soil organic matter and total nitrogen content for the four grasslands. The present results suggests that plant roots have significant effects on the distribution of soil nutrients in soil profiles in the riparian zone along the TGR. Nevertheless, additional investigations are needed to reveal the specific interactions between plant roots distribution, soil nutrients and water level fluctuations.展开更多
The enrichment of nutrients (Noa-, Noa-, PO43-), suspended particles, organic matter (POC, PON,DOC) , and trace metals (Cu, Ni, Cd) was determined in the sea surface microlayer of Xiamen Bay and Jiulong Estuary. The m...The enrichment of nutrients (Noa-, Noa-, PO43-), suspended particles, organic matter (POC, PON,DOC) , and trace metals (Cu, Ni, Cd) was determined in the sea surface microlayer of Xiamen Bay and Jiulong Estuary. The mean enrichment factors ([Xi]microlayer/[Xi ]15cm in depth) mostly ranged between 1 . 0 and 2. 0. The dissolved forms were the major forms of the components measured, the enrichment of dissolved organic matter and suspended particles could lead to the changes in the total amount and speciation of nutrients and trace metals. No correlation was observed between sample concentrations, speciation, enrichment factors and sample locations. However, some evidence shows that these parameters are correlated with sea state, indicating the complexity and dynamic nature of the sea surface microlayer.展开更多
文摘Distributed photovoltaic(PV)is one of the important power sources for building a new power system with new energy as the main body.The rapid development of distributed PV has brought new challenges to the operation of distribution networks.In order to improve the absorption ability of large-scale distributed PV access to the distribution network,the AC/DC hybrid distribution network is constructed based on flexible interconnection technology,and a coordinated scheduling strategy model of hydrogen energy storage(HS)and distributed PV is established.Firstly,the mathematical model of distributed PV and HS system is established,and a comprehensive energy storage system combining seasonal hydrogen energy storage(SHS)and battery(BT)is proposed.Then,a flexible interconnected distribution network scheduling optimization model is established to minimize the total active power loss,voltage deviation and system operating cost.Finally,simulation analysis is carried out on the improved IEEE33 node,the NSGA-II algorithm is used to solve specific examples,and the optimal scheduling results of the comprehensive economy and power quality of the distribution network are obtained.Compared with the method that does not consider HS and flexible interconnection technology,the network loss and voltage deviation of this method are lower,and the total system cost can be reduced by 3.55%,which verifies the effectiveness of the proposed method.
基金The project supported by NSF of Shandong Province
文摘According to the physiological and anatomical characteristics of small intestine,neglecting the effect of its motility on the distribution and absorption of drug and nutrient,Y.Miyamoto et al.proposed a model of two-dimensional laminar flow in a circular porous tube with permeable wall and calculated the concentration profile of drugby numerical analysis.In this paper,we give a steady-state analytical solution of the above model including deactivationterm.The obtained results are in agreement with the results of their numerical analysis. Moreover the analytical solution presented in this paper reveals the relation among the physiological parameters of the model and describes the basic absorption rule of drug and nutrient through the intestinal wall and hence pro- vides a theoretical basis for determining the permeability and reflection coefficient through in situ experiments.
基金supported by the Program from Shanghai Uni-versity of Traditional Chinese Medicine(B201725)
文摘In this study, we show that the percutaneous absorption and brain distribution of tetramethylpyrazine(TMP) is enhanced when combined with borneol(BN) in a microemulsionbased transdermal therapeutic system(ME-TTS). The formulation of the TMP and BN microemulsion(TEM-BN-ME) was optimized in skin permeation studies in vitro following a uniform experimental design. Male Sprague-Dawley rats were used for the in vivo pharmacokinetic and tissue distribution studies of TMP-BN-ME-TTS. In the pharmacokinetic study, the TMP-BN-ME-TTS treated rats had significantly higher( P < 0.05) C max and AUC of TMP than the TMP-ME-TTS treated rats, indicating that BN improves the rate and extent of TMP percutaneous absorption. In the tissue distribution study, the AUC of TMP in brain was significantly higher in the TMP-BN-ME-TTS group( P < 0.05), indicating that BN facilitates the distribution of TMP in brain. In summary, BN enhanced the percutaneous absorption and brain distribution of TMP in a microemulsion-based transdermal therapeutic system.
基金supported by the Key Technologies R&D Program of China during the 11th Five-Year Plan period (2006BAD02A08)the Earmarked Fund for Modern Agro-Industry Technology Research System,China
文摘Zinc(Zn) is an important essential microelement for wheat.In order to study the characteristics of Zn absorption,accumulation and distribution in highly-yielding winter wheat(with a grain yield of 9 000 kg ha-1),field experiments were conducted in Gaocheng County of Hebei Province,China.Four winter wheat cultivars,i.e.,Shimai 14,Jifeng 703,Shimai 12,and Shixin 828,and four cultivars,i.e.,Temai 1,Shimai 12,Shixin 531,and Shixin 828,were used in the experiment,during 2004-2005 and 2005-2006,respectively.Plant samples were taken from the plots at each growing stage for Zn concentration analysis.The main results showed that the concentration of Zn in various above-ground organs of wheat was 9.5-112.5 mg kg-1 at different growing stages.The organ with the highest Zn concentration differed with the change of growth center at different growing stages.Accumulation of Zn in leaf blades was the highest among all the organs during early growing period,and more than 50% of the Zn accumulation was distributed to leaf blades before jointing,and higher than that to other organs.In late growing period,however,the accumulation of Zn in grains was the highest,and 58.1% of the Zn accumulation was distributed in grains at maturity.The total accumulation of Zn in wheat plant during its life span ranged from 384.9 to 475.9 g ha-1.The amount of Zn required for the formation of 100 kg grain yield ranged from 4.3 to 5.2 g.All the organs were ordered in such a sequence that leaf blades 〉 spikes 〉 leaf sheaths 〉 stems according to their net absorption and transportation of Zn as well as their contribution to Zn accumulation in grains.58.2-60.3% of the Zn accumulated in grains was redistributed from other organs,mostly from leaf blades.Concentration and accumulation of Zn in all the organs of wheat was high during early and middle growing periods,while accumulation of Zn in grains during late growing period mainly depended on the redistribution from other organs.According to these characteristics of Zn absorption and accumulation,Zn should be applied as seed dressing or basal fertilizer,so as to accelerate the early growth and Zn absorption of wheat.
基金Supported by National Key Research Plan Project(2016YFD0801001,2016YFD0200103,2017YFD0800500)
文摘Based on split plot design method of field test,the impacts of supplemental irrigation based on soil moisture measurement and nitrogen use on winter wheat yield and nitrogen absorption and distribution were studied.Supplemental irrigation had three levels: 60%(W_1),70%(W_2) and 80%(W3) of the targeted relative water content at 0-40 cm of soil layer during jointing period of winter wheat.Nitrogen fertilization had three levels: not using nitrogen(N_0),using pure nitrogen of 195 kg/hm^2(N_(195)) and 255 kg/hm^2(N_(255)).Results showed that:(i)different supplemental irrigation and nitrogen fertilization significantly affected plant height and leaf area of winter wheat during key growth period.Under the same supplemental irrigation treatment,both plant height and leaf area of winter wheat showed as N_(255)> N_(195)> N_0(P <0.05).Plant height in N_(195) and N_(255)treatments was significantly higher than that in N_0 treatment,but there was not significant difference between N_(195) and N_(255)(P >0.05).Under the same nitrogen fertilization,plant height in W_2(569.4 m^3/hm^2) and W3(873.45 m^3/hm^2) treatments was significant higher than that in W_1(265.2 m^3/hm^2),but there was not significant difference between W_2 and W3(P >0.05).It illustrated that excessive nitrogen fertilization and supplemental irrigation did not significantly affect plant height and leaf area of winter wheat.(ii) Under the same nitrogen fertilization level,yield increase effect of winter wheat by supplemental irrigation showed a declining trend with nitrogen application amount increased.It illustrated that nitrogen fertilization and supplemental irrigation had certain critical values on the yield of winter wheat.When surpassing the critical value,the yield declined.When nitrogen fertilization amount was 195 kg/hm^2,and supplemental irrigation amount was 70% of field moisture capacity(569.4 m^3/hm^2),the highest yield 8500 kg/hm^2 could be obtained.(iii) During mature period of winter wheat,nitrogen accumulation amount of plant treated by nitrogen was significantly higher than that not treated by nitrogen(P <0.05).But under the treatments of W_2 and W3,nitrogen accumulation amount in N_(255) significantly declined when compared with N_(195)(P <0.05).Especially under W3(873.45 m^3/hm^2) level,nitrogen accumulation amount in N_(255) was even lower than N_0.Under the treatments of N_0 and N_(195),nitrogen accumulation amount of plant significantly increased with supplemental irrigation increased(P < 0.05).But under N_(255) treatment,there was not significant difference(P > 0.05).It illustrated that moderate supplemental irrigation and nitrogen fertilization could improve nitrogen absorption ability of winter wheat,but excessive supplemental irrigation and nitrogen fertilization were not favorable for plant's nitrogen absorption.(iv) Although the increase of supplemental irrigation during jointing period improved nitrogen absorption ability of winter wheat and promoted winter wheat absorbing more nitrogen,it inhibited nitrogen transferring and distributing to seed.Comprehensively considering growth condition of winter wheat and nitrogen risk condition,it is suggested that nitrogen application amount was 195 kg/hm^2,and supplemental irrigation reached 70% of field moisture capacity(569.4 m^3/hm^2),which could be as the suitable water and fertilizer use amounts in the region.
文摘The risk of pharmacokinetic polyphenols-trace elements interaction may undesirable therapeutic outcomes. We evaluate the long-term use of silibinin, epigallocatechin (ECGC), quercetin and rutin on the absorption and tissue distribution of zinc, copper and iron after single oral doses in rats. Five groups of rats were either with olive oil as control or with one of the polyphenols silibinin, EPGC, quercetin or rutin, administered orally as oily solutions for 30 days. At day 30, a solution contains sulphate salt of zinc, copper and iron was administered orally;3 hrs later blood samples, tissues of brain, kidney and liver were obtained for evaluation of the elements levels. The results showed that the polyphenols increased both serum and tissue levels of these elements compared with controls. This effect was relatively varied according to the structural differences among flavonoids. In conclusion, long-term use of supraphysiological doses of flavonoids increase absorption of Zn, Cu and Fe and their tissue availability in brain, kidney and liver;this effect seems to be different with variations in structural features.
基金Supported by Key Technology R&D Program of Hubei Province(Research and Development,and Demonstration Type)(2015BBA178)Special Project for Selenium-enriched Industry Development in Hubei Province(XKJ201501-17)
文摘Under the same conditions of selenium application and application period,different application concentration treatments were set carry out the field plot experiments. The results showed that different treatments had no effect on the growth and development of rice plants;different treatments had an effect on the economic traits of rice; selenium treatment increased the number of filled grains per panicle,seed setting rate and 1 000-grain weight,thus increasing yield; the level of yield was Se4 > Se3 > Se2 > Se1 > Se0; different treatments had a greater effect on the milled rice rate; selenium treatment increased the milled rice rate; the milled rice rate of Se3 and Se4 treatments were 65% and 64%,respectively,which was significantly higher than that of the control group; the general law of selenium absorption of rice was leaf > stem> rice; the selenium content in leaves,stems and rice of different treatments was the highest in Se3 treatment; both the selenium content of rice( total selenium and organic selenium) and the ratio of organic selenium to total selenium in the selenium treatment met the local food safety standard of Hubei Province Selenium content of Selenium-enriched Foods( DBS42/002-2014); selenium-treated rice plants had a high selenium utilization rate,in the range of 51. 26%-64. 12%,exceeding 50%.
文摘Lead and cadmium in herbal medicines are highly toxic to living organisms even in low concentrations. An effective method is developed for analysis of trace lead and cadmium in Chinese herbal medicines and their decoctions by graphite furnace atomic absorption spectrometry (GFAAS). The effects of analytical conditions on absorbance were investigated and optimized. A water-dissolving capability for Pb and Cd was investigated, and the contents of different species in five Chinese herbal medicines and their decoctions were analyzed. The content ratios (kow) of n-octanol-soluble Pb or Cd to water-soluble Pb or Cd were evaluated, and the distribution of Pb and Cd in water decoction at stomach and intestine acidities was developed, in the first time. The contents of water-soluble Pb and Cd, n-octanol-soluble Pb and Cd, and their content ratios were related with the kind of medicine and the acidity of the decoction. The proposed method has the advantages of simple operation, high sensitivity and high speed, with 3 σ detection limits of 4.2 pg for Pb and 0.1 pg for Cd.
基金Supported by Sichuan Science and Technology Plan Project(2014NZ0033)~~
文摘This study was conducted to investigate the distribution and accumulation of major elements of 5-year-old Eucalyptus grandis forests with the densities of 556 trees/hm2 and 1 667 trees/hm2. The results showed that: (1) The distribution of ma- jor nutrient element contents in various organs of the E. grandis with the 2 densi- ties was nearly the same, and the ranked order was leaf〉tree trunk〉branch or branchlet〉fruit〉bark. (2) From the distribution of nutrient elements and organic mat- ter in the trunk, P, K, Mg and Ca contents presented basically a trend of increasing with the trunk height increasing. And the organic matter content increased with the trunk height increasing in the low density stand, while the result was opposite in the high density stand. Furthermore, N content increased with the trunk height increas- ing in the low density stand, but the content in the high density stand exhibited a trend of decreasing at first, increasing then and increasing at the last. (3) From the distribution of biomass, the ranked order was tree trunk〉bark or branch〉branchlet〉 leaf〉fruit. And (4) The accumulated amounts of major nutrient elements in various organs under the 2 stand densities was nearly same. Ca content was the highest in the 2 kinds of plantations, followed by N, K, Mg and P contents. Ca content was 601.78 kg/hm2 in the low density stand and 1 204. 43 kg/hm2 in the high density stand.
基金Supported by Agricultural Environment and Ecosystem Protection Program of Ministry of Agriculture of the People's Republic of China(2110402-201258)Agricultural Science and Technology Achievement Transformation and Promotion Program of Tianjin City(201203030)Cooperation Project of China and Canada(IPNI,Tianjin-2011)~~
文摘ObjectiveThis study aimed to investigate the effect of the interactions among potassium (K), calcium (Ca) and sodium (Na) on cabbage growth and nutrient absorption. MethodA total of 11 treatments with different levels of K, Ca and Na were set in the pot experiment to measure the nutrient content and uptake in cabbage plants. ResultThe use of K or the combined use of K and Ca improved the cabbage absorption on K and Ca. In addition, K and Ca presented an interaction as that appropriate amount of Ca promoted K uptake while excessive Ca inhibited the uptake. The treatment of Ca 2 K 3 with 0.33 g/pot of Ca and 0.67 g/pot of K could significantly increase the quantity of dry matter accumulation and absorption of Ca and K in cabbage, was the best among all treatments. ConclusionApplication of suitable amount of Ca could release the Na stress on cabbage growth at the low level of Na in soil.
文摘[Objective] The paper was to study the distribution of main nutrients in seedlings of umbrella bamboo (Fargesia murielae) in Shennongjia National Nature Reserve. [Method] The study was conducted in Liangfengya of Shennongjia National Nature Reserve. In the field investigation, six clumps of umbrella bamboo grown independently were randomly selected and sampled. The total nitrogen, total phosphorus and total potassium of umbrella bamboo were detected by regular plant analysis method. The age classes of bamboo seedlings were ascertained by age grade backtracking method. [Result] In different organs, N, P, K contents in branches and leaves were significantly higher that than in stems. Along age grades, N and P contents performed "M" shape in branches and leaves, while K content approximately performed as normal distribution. [Conclusion] The nutrients distribution pattern of these seedlings is likely formed by its nutrition mechanism which allocates nutrients according to different needs or by external interference of environmental features. However, the specific causes still need further investigation.
基金the National Key Technologies R & D Program of China (2006BAD05B09, 2006BAD02A14)the National Ba- sic Research Program of China (2007CB109308)the China-Japan Collaboration Project
文摘To evaluate the effect of organic manure application with chemical fertilizers on rice yield and soil fertility under long-term double-rice cropping system, a six year field experiment was conducted continually in the paddy soil derived from Quaternary red clay in Hunan Province of southern China. Four different treatments, i.e., no nitrogen with chemical P and K (PK), swine manure only (M), N, P and K chemical fertilizers only (NPK), and half chemical fertilizers combined with half swine manure (NPKM) with four replications were included. Each N, P and K application rate was the same at all the treatments (except the N application rate at PK) and N application rate was 150 kg N ha^-1. All fertilizers were applied to soil tillage layer with once application as baseal fertilizers. The nutrients uptake rate, grain yield, nitrogen use efficiency, and soil organic matter content at each treatment were investigated. The NPKM treatment achieved the highest mean annual yield of 12.2 t ha^-1 (68% higher than that of PK). Higher dry matter accumulation and nutrients absorption were observed during the middle-late growth period in the NPKM treatment, with higher panicle number per unit and filled-grain number per panicle. Its average nitrogen use efficiency was 36.3% and soil organic matter increased by 18.5% during the experimental period in the NPKM treatment, which were significantly higher than those in the NPK treatment. Organic manure application with chemical fertilizers increased the yield and nitrogen use efficiency of rice, reduced the risk of environmental pollution and improved soil fertility greatly. It could be a good practical technique that protects the environment and raises the rice yield in this region.
基金supported by the Forestry Public Benefit Research Projects of National Forestry Administration under Grant No.201304303National Natural Science Foundation of China under Grant No.31370619+1 种基金Science and Technology Project of the Fujian Province under Grant No.2014N0002China Postdoctoral Science Foundation under Grant No.132300148
文摘Biomass production and nutrient (N, P, K, Ca and Mg) accumulation, distribution and cycling were quantified in young, mature and over-mature (10-, 22-, and 34-year old) Chinese fir [Cunninghamia lanceolate (Lamb.) Hook] plantations in southern China. Total stand biomass of young, mature and over-mature stands was 38, 104 and 138 t ha-1 respectively. Biomass production increased significantly with age. Stem wood represented the highest percentage of stand biomass, accounting for 41, 55 and 63 % in the young, mature and over-mature plan- tations respectively. Nutrients concentration was highest in live needles and branches, and lowest in stem wood. The plantations accumulated more N, followed by K, Ca, Mg, and P. Nutrient return amount, nutrient utilization effi- ciency, nutrient turnover time, the ratio of nutrient return and uptake increased with stand age, which implies that young Chinese fir deplete soil nutrients to maintain growth, and efficiently utilize nutrients to decrease dependence on soil nutrients as they age. Harvesting young Chinese fir plantations would therefore lead to high nutrient loss, but prolonging the rotation length could improve soil recovery, and help sustain productivity in the long-term. Improved nutrient return through litterfall as stands get older may also be beneficial to nutrient pool recovery.
基金Supported by the National Natural Science Foundation of China (No. 40136020)Key International Technology Cooperation Plan (No. 2004DFA03600)the National Basic Research Program of China (973 Program, No. 2005CB422305)
文摘Water samples were collected in 120 stations in the Bohai Sea of China to analyze the distribution of dissolved nutrients and assess the degree of eutrophication in August 2002. The result shows that the average concentration of DIN increased and the PO4-P concentration sharply decreased compared to the previous data of corresponding period. The high concentrations of DIN and PO4-P occurred in coastal waters, especially in the bays and some river estuaries, while the high concentrations of SiO3-Si in the surface and middle depth occurred in the central area of the Bohai Sea. The average ratio of DIN/PO4-P was much higher than the Redfield Ratio (16:1). Apparently, PO4-P was one of the limiting nutrient for phytoplankton growing in the sea. The average concentrations of DON and DOP were higher than their inorganic forms. The results of eutrophication assessment show that 22.1% of all stations were classified as violating the concentration levels of the National Seawater Quality Standard (GB 3097-1997) for DIN and only 3.9% for PO4-R The average eutrophication index in the overall area was 0.21±0.22 and the high values occurred in Bohai Bay, Liaodong Bay and near the Yellow River estuary. This means that the state of eutrophication was generally mesotrophic in the Bohai Sea, but relatively worse in the bays, especially some river estuaries.
基金supported by the China Agriculture Research System(CARS-29-40)
文摘The soil organic matter and nutrients are fundamental for the sustainability of pear production, but little is known about the spatial distribution of soil organic matter and nutrients in a pear orchard. With the soil of the pear (cv. Dangshansu on P.betulifolia Bunge. rootstock) orchard under clean and sod cultivation models as test materials, the experiment was conducted to evaluate spatial variability of soil organic matter (SOM), total nitrogen (STN), total phosphorus (STP), total potassium (STK), available nitrogen (SAN), and available potassium (SAK) in and between rows at different soil depths (0-60 cm). The SOM, STN, STP, STK, SAN and SAK of the different soil layers under the two tillage models were different in the vertical direction. The SOM, STN, STP and SAN in the 0-20 cm soil layer were higher than those in the 20-40 and 40- 60 cm soil layers. The STK of 40-60 cm soil layer was higher than that in the 0-20 and 20-40 cm soil layers. The STK increased with the depth of soil in the vertical direction in the clean cultivated pear orchard. Variability of the SOM, STN, STP, STK, SAN and SAK of sample sites in between rows of the same soil layer was found in the pear orchard soil in the horizontal direction under clean and sod cultivation management systems, except that STK of all sites did not show the difference in identical soil layers in the pear orchard under clean cultivation. The sod cultivation model improved the SOM, STN, and STK in the 0-20 cm soil layer in the pear orchard, and the three components increased by 12.8, 12.7 and 7.3% compared to clean cultivation, respectively. The results can be applicable to plan collection of orchard soil samples, assess orchard soil quality, and improve orchard soil management practices.
文摘The distribution of nutrients and the effect of side transport of nutrients on anchovy spawning ground to the southern waters of Shandong Peninsula are discussed based on the data collected in June 2000, May and June 2001. The coastal current and upwelling are the main physical processes of nutrient transport to the southern waters of Shandong Peninsula. The concentrations of nutrients, Chl-a, the density of anchovy eggs, larva and juvenile fish increase obviously where they are greatly affected by these processes, while the contents of nutrients and Chl-a, the density of anchovy eggs, larva and juvenile fish decrease significantly where these processes diminish or disappear. The investigation suggest that the side transport of nutrients by Lubei (North Shandong) coastal current in the northern area causes the Chl-a content to be high and dense anchovy eggs, larva and juvenile fish to be dense in the coastal area of the Chengshan Cape. In the southern area, the riverine input from Subei irrigation ditch with high content of nutrients inshore and upwelling in the western edge of the Huanghai Sea Cold Water offshore should be responsible for high Chl-a concentration and dense anchovy eggs, larva and juvenile fish. It is possible that these processes of nutrient transport have controlled the anchovy spawning ground to the southern waters of Shandong Peninsula.
基金Supported by Special Fund for Innovation-driven Development in Guangxi Zhuangzu Autonomous Region(GK AA17204087-11)Natural Science Foundation of China(31560206 31760201)
文摘[Objectives]This study was conducted to reveal the characteristics of nutrient absorption and accumulation in Pinus massoniana plantations in Northwestern Guangxi.[Methods]Based on field investigation and indoor analysis,the contents,accumulation and annual net accumulation of five nutrient elements(N,P,K,Ca and Mg)in a mature P.massoniana plantation(26-year-old)in Nandan County,Guangxi Province were studied.[Results]The contents of nutrient elements in different organs of the mature P.massoniana plantation were the highest in the leaves,followed by the bark,branch and root,and the lowest in the stem.In general,among the contents of the five elements in different organs,N content was the highest,followed by K or Ca,and P and Mg were the lowest.The total accumulation of nutrient elements in the 26-year-old mature P.massoniana plantation in northwestern Guangxi was 1 384.05 kg/hm^2.Among the different structural levels of the stand,the tree layer had the highest accumulation of nutrient elements,which was 1 198.41 kg/hm^2,accounting for 86.59%of the total accumulation of nutrients in the plantation,and the accumulation of nutrients in other layers from the largest to the smallest was the litter layer(91.97 kg/hm^2),herb layer(49.86 kg/hm^2)and shrub layer(43.92 kg/hm^2),accounting for 3.17%,3.60%and 6.64%of the total nutrient accumulation of the plantation,respectively.The annual net accumulation of nutrient elements in the tree layer of the mature P.massoniana plantation was 46.09 kg/(hm^2·a),and the order of the annual net accumulation of different nutrient elements followed N>K>Ca>Mg>P;and the accumulation of 1 t of dry matter needed 6.37 kg of the five nutrients.[Conclusions]This study provides a scientific basis for the rational management of P.massoniana plantations,especially forest soil management.
文摘To study the contents and distribution of inorganic nutrients in the Bohai Sea of China, two cruise surveys were undertaken in August (summer) 2000 and January (winter) 2001, respectively. A total of 595 water samples were collected from 91 stations and five nutrients, i.e., nitrate, nitrite, ammonia, phosphate and silicate, were analyzed for each sample. The results show that the average concentration of dissolved inorganic nitrogen (DIN) in the Bohai Sea in winter (6.529 μmol L -1) is significantly higher than that in summer (3.717 μmol L -1). The phosphorus concentration in winter (0.660 μmol L -1) is also significantly higher than that in summer (0.329 μmol L -1). Mean silicate concentration in winter (7.858 μmol L -1) is, however, not significantly different from that in summer (7.200 μmol L -1). Nutrients also vary considerably in different areas in Bohai Sea. DIN concentration in the Laizhou Bay (4.444 μmol L -1), for example, is significantly higher than those in the Bohai Bay (2.270 μmol L -1) and Bohai Strait (2.431 μmol L -1), which is caused by the discharge of large amounts of nitrogen into Laizhou Bay via Yellow River. The nutrients show different vertical distribution patterns. In summer, nutrients in bottom layer are generally richer than those in surface and middle layers. In winter, however, nutrients are not significantly different in different layers. Compared with historic data, DIN contents have increased continually since the early 1980 s. Based on atomic ratios of different nutrients, nitrogen is still the limiting factor for algal growth in the Bohai Sea.
基金the National Natural Science Foundation of China (Grant Nos.41601296,41571278 and 41771321)China Postdoctoral Science Foundation (Grant No.2016M592720)+1 种基金Applied Basic Research Foundation of Yunnan Province (Grant No.2016FD011)Sichuan Science and Technology Program (2018SZ0132)
文摘Since the impoundment of the Three Gorges Reservoir(TGR), the riparian zone has been subjected to numerous environmental changes. This study was conducted to recognize the distribution of grass roots and its impacts on soil nutrients in the water level fluctuation zone of TGR. Roots of four predominant herbaceous plants in the study area, specifically, Cynodon dactylon, Hemarthria altissima, Hemarthria compressa, and Paspalum paspaloides, and their corresponding relation with soil nutrient contents were investigated. Root surface area density was determined with Win RHIZO, and the relationships of root distribution with soil depths and soil nutrient contents were studied. The results indicates that most roots are distributed in the top soil layer of 0-10 cm. Estimated root surface area density for the selected grass species ranges from 0.16 to 13.44 cm^2/cm^3, and decreases exponentially with an increase in soil depth. Soil organic matter and total nitrogen contents are significantly lower on bare control area than the corresponding values on the grasslands. Total nutrient contents on grasslands of C. dactylon and H. compressa are higher than those of other grass areas. Root length density and root surface area density are significantly correlated with soil organic matter and total nitrogen content for the four grasslands. The present results suggests that plant roots have significant effects on the distribution of soil nutrients in soil profiles in the riparian zone along the TGR. Nevertheless, additional investigations are needed to reveal the specific interactions between plant roots distribution, soil nutrients and water level fluctuations.
文摘The enrichment of nutrients (Noa-, Noa-, PO43-), suspended particles, organic matter (POC, PON,DOC) , and trace metals (Cu, Ni, Cd) was determined in the sea surface microlayer of Xiamen Bay and Jiulong Estuary. The mean enrichment factors ([Xi]microlayer/[Xi ]15cm in depth) mostly ranged between 1 . 0 and 2. 0. The dissolved forms were the major forms of the components measured, the enrichment of dissolved organic matter and suspended particles could lead to the changes in the total amount and speciation of nutrients and trace metals. No correlation was observed between sample concentrations, speciation, enrichment factors and sample locations. However, some evidence shows that these parameters are correlated with sea state, indicating the complexity and dynamic nature of the sea surface microlayer.